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Abstract

We use French data over the 1994-2013 period to study how imports of industrial

robots affect firm-level outcomes. Compared to other firms operating in the same 5-

digit industry, robot importers are larger, more productive, and employ a higher share

of managers and engineers. Over time, robot import occurs after periods of expansion

in firm size, and is followed by improvements in effi ciency and a fall in demand for

labor. Guided by a simple model, we develop various empirical strategies to identify

the causal effects of robot adoption. Our results suggest that, while demand shocks

generate a positive correlation between robot imports and employment, exogenous

exposure to automation leads to job losses. We also find that robot exposure increases

productivity and the employment share of high-skill professions, but has a weak effect

on total sales. The latter result suggests that productivity gains from automation may

not be entirely passed on to consumers in the form of lower prices.
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1 Introduction

Humans have always been afraid of competing against machines. Back in the 19th century,

the Luddites protested violently against automated textile equipment fearing it would de-

stroy their jobs. In the 1930s, John Maynard Keynes warned of the risk of “technological

unemployment”. Today, amid growing concerns, economists and politicians alike are dis-

cussing the opportunity of introducing a robot tax. While changes in the production process

did not lead to mass unemployment, at least yet, stagnation in wages and productivity

growth, and soaring inequality, are fuelling the view that new technologies failed to deliver

the promised prosperity.

In this debate, the rise of industrial robots has gained special attention. Robots are

programmable machines that have the capability to move on at least three axes. As such,

robots, unlike other pieces of equipment, are designed to replicate human actions. The first

prototype, the Unimate, was introduced in 1961 at General Motors to perform basic welding

and carrying tasks. Other machines of this type were developed to assist human workers

with a wide array of tasks, including heavy lifting, as well as hazardous or repetitive work.

Yet, thanks to several recent technological advancements, today’s robots have a much higher

degree of autonomy. As a result, the adoption of these technologies has grown at a staggering

rate.1

Industrial robots are technologies adopted by firms. To understand their effect on the

economy, one must know how they affect the firms adopting them in the first place. Do robots

substitute or complement humans in firms that automate? Are the effects heterogeneous

across firms and workers? Do robots increase the productivity of firms using them? And if

so, are these productivity gains passed on to consumers or rather used to consolidate market

power? From a theoretical perspective, the answer to all these questions is ambiguous. From

an empirical perspective, unfortunately, the available evidence is worryingly limited due to

the lack of firm-level data on the use of robotics (Raj and Seamans, 2018).

This paper is one of the first attempts to fill this gap. Our main innovations are to

measure automation using detailed imports of industrial robots by French firms over the 1994-

2013 period and a novel identification strategy to identify causality. Recently, researchers

have turned to import data as a source of information on the usage of robots. Although

1By 2018, there were an estimated 2.44 million industrial robots performing a variety of tasks that humans
used to do. This number is expected to reach 4 million by 2022 and the future scale of the phenomenon is
diffi cult to predict. Frey and Osborne (2017) argue that almost half of U.S. employment is at risk of being
automated over the next two decades. See also Brynjolfsson and McAfee (2014) and Baldwin (2019).
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they do not include domestic purchases, robot imports are widely recognized as a good

proxy for automation because of the high concentration of this very specialized sector. For

instance, in 2017, the top six leading companies, ABB (Switzerland), Omron (US), Fanuc

(Japan), Kawasaki Robotics (Japan), KUKA (Germany) and Yaskawa (Japan) accounted

for 44 percent of global revenue. Global exports are also dominated by few suppliers, with

Japan and Germany alone accounting for 50 percent of the total volume, while France’s share

is about 5 percent only. Compared to other proxies used in the literature, such as dummies

collected from surveys, the advantage of robot imports is that they provide a precise and

comparable measure of automation intensity that is available for the near universe of firms.

With this rich micro data, we develop various empirical strategies to identify the causal

effects of robot adoption on sales, productivity and employment within French firms and we

carry out an extensive set of robustness checks.2

To guide the empirical analysis, we build a simple model in which heterogeneous firms

invest in automation, whose effect is to replace workers with capital in a set of tasks. Au-

tomation saves on production workers, but it also requires non-production workers such as

engineers and managers. If the cost of robots declines, firms choose to invest more in automa-

tion, with ambiguous effects on employment. On the one hand, machines displace workers;

on the other hand, the increase in productivity raises the demand for all factors. These

effects vary across firms: since automation saves on the variable cost, firms facing a higher

demand invest more aggressively in automation and are more likely to shed workers.

The model yields a number of testable predictions. First, it shows that positive demand

shocks are likely to increase employment and automation simultaneously, thereby generating

a spurious positive correlation between these variables in the data. Negative shocks to the

cost of machines, instead, trigger automation and are more likely to reduce employment,

especially in firms that are more prone to automate. The model also yields a measure

of automation intensity that is independent of demand shocks and hence is more likely to

capture the negative effect on employment. Besides the impact on labor demand, automation

increases productivity and the relative demand for non-production workers.

We then take these predictions to the data. We start by documenting some descriptive

patterns. We focus on the manufacturing sector, where automation is more prevalent, and

exclude industries in which robot importers are more likely to be resellers rather than fi-

nal users. These data show that robot adopters differ significantly from non-adopters. In

particular, consistently with the model, they are larger, more productive, and have a larger

2We also validate that our firm-level proxies are consistent with commonly-used industry-level measures.
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employment share of high-skill professions. We also find that over time the value-added

share of robot adopters has grown significantly more than their employment share.

We next carry out two preliminary exercises aimed at gauging the role of demand shocks

in driving these patterns. First, we use a difference-in-differences event study approach

to analyze how firm-level outcomes evolve over time for firms that start to adopt robots

relative to firms that do not. The results show that robot adoption occurs after periods of

expansion in firm size, and is followed by improvements in productivity and labor demand

shifts towards high-skill professions. However, the upward trend in employment reverses

and sales stop diverging after adoption, suggesting that workers start to be displaced and

that productivity gains do not translate entirely into a fall in prices. Second, we regress

the firm-level outcomes on a measure of robot intensity, the ratio between cumulated robot

imports and the capital stock of the firm, which should purge away demand shocks. The

results indicate that an increase in robot intensity is associated with a fall in employment,

and an increase in labor productivity and in the employment share of high-skill professions.

These findings suggest that demand shocks may be responsible for the positive correlation

between employment and robot adoption in the data.

To identify the causal effects of robots, we next focus on long-run changes in outcomes

within firms and exploit variation in the decision to adopt robots driven by pre-existing

differences in technological characteristics that determine the predisposition to automate.

More precisely, we construct a novel identification strategy by interacting a proxy for how

suitable production is for automation in a given industry with a proxy for the ease with

which robots can replace worker activities within each firm. This variable captures the idea

that a reduction in the cost of machines, which should be relatively larger in industries

whose production is more suitable for automation, should affect robot adoption relatively

more in firms whose production is more intensive in tasks that can be performed by robots.

Compared to shift-share designs, this difference-in-differences approach is based on entirely

pre-determined firm and industry characteristics that cannot respond to demand shocks.

Our proxy for an industry’s suitability for automation is the initial average robot intensity

of all other firms in the same 5-digit industry. Our firm-level proxy for replaceability is

instead the pre-sample share of employment that can be replaced by robots in each firm,

and is constructed by combining the classification of tasks performed by robots in Graetz and

Michaels (2018) with detailed firm-level occupational data. Accordingly, our identification

strategy exploits differential exposure to robots across firms that operate in industries with

varying suitability for automation and exhibit a heterogeneous prevalence of automatable
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tasks in production. An important advantage of this strategy is that we can build an exposure

variable even for firms that do not import robots directly.

We find that while robot adoption and employment growth are correlated, firms with ini-

tially more replaceable tasks operating in industries more suitable for automation experience

a stronger reduction in employment than other firms. Regarding other outcomes, we find

that robot exposure leads to an increase in the employment share of high-skill professions

and in various measures of productivity, while the effects on total sales are positive, but not

statistically significant. We then perform an extensive sensitivity analysis, including building

industry’s suitability from the US stock of installed robots from the International Federation

of Robotics (IFR), which is however available for a coarser industry classification only. We

also consider possible threats to identification by controlling for a large set of other firm- or

industry-level characteristics that may have differential effects depending on the industry’s

suitability for automation or the firm’s replaceability of employment.

To lend further credibility to our approach and shed more light on the mechanism at play,

we show that robot exposure is a significant predictor of robot adoption and use these results

to quantify the effect that the variation in robot adoption induced by robot exposure, as

opposed to demand shocks, exerts on firm-level outcomes. We find that exogenous adoption

explains an average annual fall in employment equal to 2.13 percent in robot adopters relative

to the remaining firms.

These patterns suggest that demand shocks lead firms to both expand and automate,

resulting in a positive spurious correlation between robot adoption and employment. Once

demand shocks are neutralized, however, the relationship turns negative, confirming the

hypothesis that exogenous changes in automation lead to job displacement. Hence, our

results warn that caution should be exercised in interpreting the positive correlation between

robot adoption and employment often found in the literature. The weaker results on sales

also suggests that, while robot adoption increases productivity, the higher effi ciency does not

necessarily lead to a fall in prices. Consistently with this interpretation, we also show some

evidence that robot exposure leads to an increase in reported profits, but has weak effects

of export prices. This suggests that part of the gains for consumers may be muted by an

increase in markups. To date, this is the first evidence lending support to the hypothesis

that investment in robots may give firms market power. It also raises the concern that firms

may have had an incentive to choose an “excessive” level of automation (see, for instance,

Acemoglu and Restrepo, 2018a, Martinez, 2021, Korinek and Ng, 2018, Caselli and Manning,
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2019).3

To our knowledge, this is the first paper that identifies the causal effect of industrial

robots at the firm level. In doing so, it contributes to the growing literature on the labor

market impact of automation. Several influential papers use data from the IFR, which

provides information on purchases of industrial robots for a set of countries and industries.

The results are mixed. Acemoglu and Restrepo (2019) find that US commuting zones that

were more exposed to robots during the 1990—2005 period experienced negative effects on

employment and wages. However, in a panel of 17 countries, Graetz and Michaels (2018)

find that, while robots reduced the employment share of low-skill workers, they only had

a small effect on total employment and positive effects on productivity. Dauth, Findeisen,

Suedekum and Woessner (2018) find that higher robot exposure across local labor markets in

Germany led to job losses in manufacturing that were however offset by gains in the service

sector.4

To overcome the limitations of the IFR data, some recent papers have started to focus on

imports of industrial robots. Acemoglu and Restrepo (2018b) and Blanas, Gancia and Lee

(2019) use robot imports at the country level. The former paper shows that robot imports

behave similarly to other proxies for investment in automation and uses them to study the

demand for robots; the latter paper finds that sectors more prone to automation in countries

importing more from leading suppliers of robots experienced a fall in demand for low-skill,

young and female workers. Bonfiglioli et al. (2021) map US robot imports to commuting

zones and find that automation lowered manufacturing employment but also offshoring.

Firm-level robot imports have been used by Humlum (2019) for Denmark, Dixen, Hong and

Wu (2019) for Canada, and Acemoglu, Lelarge and Restrepo (2020) for France. Importantly,

none of these papers uses exogenous variation across firms to isolate the causal effect of robot

adoption and, as a result, they tend to find positive correlations with employment.

Finally, there is a growing number of papers using alternative proxies for automation

at the firm level. Some use dummies from survey data. These include Koch, Manuylov

and Smolka (2019) for Spain, Cheng et al. (2019) for China, Dinlersoz and Wolf (2018) for

the US, and a study by the European Commission (2016) for 7 European countries. They

3In an extension of the model, we allow for the possibility that automation, by fostering technological
lead, increases market power. In this case, the cost savings are partly offset by an increase in markups and,
besides effi ciency considerations, firms have an incentive to invest in automation just to increase market
power.

4Other papers showing that alternative measures of automation leads to employment losses in some
sectors that are offset by employment gains in others include Mann and Puttman (2017) and Autor and
Salomons (2017).
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find that robots are generally more likely to be used in larger and more productive firms,

and are associated with positive or non-negative changes in employment. Once more, these

papers document mostly conditional correlations. Positive employment effects are also found

by Aghion et al. (2020), who proxy automation with investment in industrial equipment

and electricity consumption of French firms, and use a shift-share Instrumental Variables

design to identify causality. As we show in our sensitivity analysis, a key difference is that

they consider a broader measure of capital inputs, which is likely to be complementary to

labor. In line with our findings, instead, Bessen et al. (2019) use matched employer-employee

data from the Netherlands to show that spikes in expenditure on "third-party automation

services" increase job separations.

The remainder of the paper is organized as follows. In Section 2, we build a partial

equilibrium model in which heterogeneous firms invest in automation, and we use it to

derive empirical implications. In Section 3, we discuss the French firm-level data and the

main aggregate facts regarding robot imports. In Section 4, we provide descriptive evidence

on how robot adopters differ from other firms and we study what happens after a firm in

the sample starts importing robots. In Section 5, we develop a novel identification strategy

to estimate the effect of robots on firm-level outcomes. Section 6 concludes.

2 The Model

To guide the empirical analysis, we build a model of monopolistic competition in which

heterogeneous firms combine production workers, non-production workers and capital to

produce differentiated goods. Firms can also invest in automation, which allows capital to

perform tasks that used to be performed by labor. The model illustrates the causes and

consequences of automation, and the main challenges when testing its empirical predictions.

It also suggests some possible identification strategies. The analysis is in partial equilibrium

and is deliberately kept as simple as possible.5

5The model adds firm heterogeneity to earlier contributions combing the task-based approach and en-
dogenous automation. See, for instance, Zeira (1998), Acemoglu and Autor (2011), Acemoglu and Restrepo
(2018a), Hemous and Olsen (2018), Aghion, Jones and Jones (2019), but also Acemoglu, Gancia and Zilibotti
(2015). See Martinez (2021) for a model of automation embodied in capital goods generating a distribution
of technologies.
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2.1 The Basic Set-Up

Consider a sector producing differentiated varieties ω with preferences over these varieties

exhibiting constant elasticity of substitution:

C =

[∫
ω∈Ω

c (ω)
σ−1
σ dω

] σ
σ−1

, σ > 1.

Firm i producing a single variety faces a demand function with a constant price elasticity σ:

yi = Aip
−σ
i , (1)

where pi is the price charged and Ai is a parameter capturing demand conditions.

To produce yi, a firm with productivity ϕi must employ capital and production workers

in a unit measure of tasks z:

yi = ϕi exp

(∫ 1

0

lnxi(z)dz
)
. (2)

Tasks z ∈ [0, κi] are automated, and hence can be performed by capital. The remaining tasks,

z ∈ (κi, 1], can only be performed by production workers. Hence, κi represents the extent of

automation. Let (ki, li) denote the quantity of capital and labor, respectively, used for the

production of yi. Denote with r the rental rate of capital and with w the wage of production

workers. We assume r < w, which will guarantee that automation raises productivity. Since

machines are cheaper than workers, there is complete specialization, in the sense that tasks

z ∈ [0, κi] are performed by machines. Hence, given symmetry we obtain:

xi(z) =

{
ki/κi for z ∈ [0, κi]

li/(1− κi) for z ∈ (κi, 1]
.

Substituting these into (2) yields:

yi = ϕi

(
ki
κi

)κi ( li
1− κi

)1−κi
. (3)

To produce, the firm must also hire fi non-production workers (managers and engineers)

with wage h. For now, we take fi as given, later we will assume it a function of automation,

κi.
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2.2 Exogenous Automation

We now solve the problem of the firm for a given level of κi. Firms are monopolistically

competitive and choose labor and capital so as to maximize profit,

max
ki,li
{piyi − rki − wli − hfi} ,

subject to the demand schedule (1), given the production function (3) and taking automation,

κi, as given. The first-order condition for labor is:

wli =

(
1− 1

σ

)
(1− κi) piyi. (4)

Equation (4) shows automation, κi, to have two opposite effects on the demand for labor.

First, there is a negative displacement effect, captured by (1− κi) and given by the fact that
more tasks can be performed by machines (capital). Second, as we will see shortly, there is a

positive productivity effect, since an increase in κi raises production, which in turn increases

the demand for labor.

The first-order condition for capital is:

rki =

(
1− 1

σ

)
κipiyi. (5)

Intuitively, the demand for capital is increasing in the set of tasks it can perform. Taking

the ratio of (4) and (5), we obtain:

ki =
κi

1− κi

(w
r

)
li,

which shows that the capital to labor ratio is also increasing in automation, κi.

Substituting ki back into the production function yields:

yi = ϕi
li

1− κi

(w
r

)κi
, (6)

which shows that output per production worker is increasing in κi if w > r, as assumed.

Intuitively, if labor is more expensive than capital, replacing workers with machines through

automation reduces the marginal cost and increases productivity. Finally, using equation
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(6) into the demand for labor (4) yields:

li = w−σ
(

1− 1

σ

)σ
Aiϕ

σ−1
i

(w
r

)κi(σ−1)

(1− κi) . (7)

This equation shows how employment depends on κi and other exogenous parameters. It

can be used to study how the productivity effect and the displacement effect depend on the

level of κi. In the limit case of full automation (κi → 1), it is immediate to see that li → 0.

This is intuitive, since in this case workers become useless for the firm, because capital can

perform all tasks at a lower cost. Hence, the displacement effect must eventually dominate

for high levels of automation. However, at low levels of automation, the productivity effect

may dominate the displacement effect. To see this, take the derivative of (7) with respect to

κi:
d ln li
dκi

= (σ − 1) ln
(w
r

)
− 1

1− κi
. (8)

This derivative is positive for values of κi lower than 1− [(σ − 1) ln (w/r)]−1. This condition

is more likely to be satisfied when σ and w/r are high, i.e., when the productivity effect

is strong enough. In particular, if σ is high, production can be scaled up without a large

countervailing fall in prices; and if w/r is high, the cost saving of automation is stronger. If

instead (σ − 1) ln (w/r) < 1, then the displacement effect always dominates.6

Finally, substituting (7) in (6) we can express output as a function of automation and

other exogenous parameters:

yi = Aiϕ
σ
i w
−σ
(

1− 1

σ

)σ (w
r

)κiσ
. (9)

This equation confirms that automation raises output as long as capital is cheaper than

production workers:
d ln yi
dκi

= σ ln
(w
r

)
, (10)

and it illustrates that the productivty effect is stronger in industries where demand is more

elastic (σ). Moreover, substituting (4) and (5) into the profit function yields

πi =
piyi
σ
− hfi,

6Acemoglu and Restrepo (2018a) emphasize another possible effect, namely, that new tasks are created
when others are automated. We abstract from this additional mechanism which would reinforce the positive
productivity effect on employment.
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which shows the familiar result that operating profit is a constant share 1/σ of revenue.

We summarize the impact of exogenous automation on firm-level employment and pro-

duction in the following proposition (proof in the text).

Proposition 1 Suppose w > r. Other things equal, an increase in automation, parameter-

ized by a rise in κi:

(i) increases production of firm i, yi, with a stronger effect the higher is σ;

(ii) decreases employment of firm i, li, if κi > 1 − [(σ − 1) ln (w/r)]−1, and increases it

otherwise.

2.3 Endogenous Automation

We now allow firms to choose the level of automation, κi. Substituting workers with ma-

chines requires a costly change in technology, and automating more and more tasks poses an

increasingly diffi cult challenge. Hence, we assume that automation entails a cost in terms

of non-production workers (i.e., managers and engineers), which is increasing and convex in

κi. For convenience, we assume the cost hfi to take the following form:

hfi (κi) = h
ρi

1− ρi

[
(1− κi)−

1−ρi
ρi − 1

]
where the parameter ρi ∈ (0, 1) captures heterogeneity across firms in the ease with which

each task can be replaced by machines. To see this, note that the marginal cost of automation

is

hf ′i (κi) = h (1− κi)−1/ρi . (11)

Equation (11) shows that automating the marginal task costs h at κi = 0 and this cost tends

to infinity for κi = 1. Moroeover, automation costs increase at a faster rate with κi the lower

ρi is. Hence, ρi can interpreted as an index of replaceability of tasks in the production process

of firm i.7

In this set-up, firms choose the level of κi that maximizes profit given the choice of factors

derived in the previous section:

max
κi

{piyi
σ
− hfi (κi)

}
.

Automation poses a trade-off between its fixed cost and the reduction in the variable cost it

7For any given task automation cost, firms with a higher ρi have a larger share of tasks below that cost.
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generates. The first-order condition for κi is:(
1− 1

σ

)
piyi ln

(w
r

)
= hf ′i (κi) . (12)

The left-hand side of (12) is the marginal benefit of automation. It shows that the benefit

of automation is increasing in the demand elasticity (σ), in revenues (piyi) and in the cost

saving entailed by machines (w/r). The right-hand side is instead the marginal cost.

Substituting yi from (9) and (11), the first-order condition for automation (12) becomes:(
1− 1

σ

)σ
Ai

(ϕi
w

)(σ−1) (w
r

)κi(σ−1)

ln
(w
r

)
= h (1− κi)−1/ρi . (13)

This expression shows the exogenous determinants of the marginal benefit of automation and

can be used to solve implicitly for the equilibrium level of κi. We can show that the second-

order condition is necessarily satisfied if (σ − 1) ln (w/r) < 1/ρi and the unique solution is

interior if: (
1− 1

σ

)σ
Ai

(ϕi
w

)(σ−1)

ln
(w
r

)
> h. (14)

Clearly, if w/r < 1 there is no benefit of automation, hence the optimal κi is zero. We

assume both conditions to be satisfied.

We summarize in the next proposition the determinants of automation (proof in Appendix

A).

Proposition 2 Suppose that condition (14) is satisfied. Then, there exists a unique equilib-

rium choice of automation κ∗i ∈ (0, 1) implicitly defined by equation (13). The comparative

statics of κ∗i to changes in the exogenous parameters are:

dκ∗i
dAi

> 0;
dκ∗i
dϕi

> 0;
dκ∗i

d(w/r)
> 0;

dκ∗i
dρi

> 0;
dκ∗i
dh

< 0. (15)

These results are intuitive and consistent with the existing literature.8 Larger firms

(high Ai and ϕi) have a stronger incentive to pay the fixed automation cost to save on the

variable production cost; automation is also increasing in the cost-saving it entails (w/r)

and decreasing in its own cost h and in 1/ρi.

8See, for instance, Dechezlepretre et al. (2019), Cheng et al. (2019), Hemous and Olsen (2018), Koch,
Manuylov and Smolka (2019).
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2.4 Empirical Implications

Effect of Automation on Firm-Level Outcomes. The model has sharp predictions

for the effect of automation on some firm-level outcomes. In particular, automation should

clearly have a positive effect on measures of productivity and increase the demand for non-

production workers. The implications of the model regarding the relationship between au-

tomation and employment are instead more nuanced. In particular, (8) shows that the

effect of κi on li is potentially ambiguous, and possibly heterogeneous across firms and sec-

tors. Hence, whether or not automation raises employment may ultimately be an empirical

question.

Challenges to Identification. The model also illustrates the key challenge that the

econometrician faces in identifying the causal effect of automation. The main diffi culty

hinges on the endogeneity of κi. As shown in Proposition 2, automation depends on parame-

ters that capture the exogenous costs and benefits of machines, namely, replaceability (ρi),

the cost of capital (r) and the cost of non-production workers (h), but it also depends on

shocks that have a direct effect on firm-level outcomes. In particular, both demand shocks,

captured by Ai, and productivity shocks, captured by ϕi, trigger automation, but they also

have a direct positive effect on production and employment. Hence, these shocks may bias

upwards the estimates of the effect of automation on sales and productivity; even worse,

they may generate a positive correlation between automation and employment, even if, con-

ditional on them, an increase in κi would lead to job losses. Firm and sector-year fixed

effects are not suffi cient to solve the problem because these shocks are likely to vary both

across firms and over time. For instance, a recent literature has highlighted the quantitative

importance of firm-specific demand shocks for explaining sales.9 Fortunately, the model also

offers possible remedies to this bias. Specifically, exogenous shocks to the costs and benefits

of automation can be used to isolate variation in κi that is orthogonal to demand shocks.

Netting Out Demand Shocks: Automation Intensity. To identify firm-specific shocks

to the cost of automation, the model suggests to use automation intensity defined as the

level of automation, κi, over capital expenditure, rki. Using the first-order condition for ki

9See, for instance, Hottman, Redding and Weinstein (2016) and Bonfiglioli, Crinò and Gancia (2019).
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(5), into the first-order condition for automation (12), we can write:

κi
rki

=
1

hf ′i(κi)
ln
(w
r

)
. (16)

This equation shows that automation intensity captures variation in the marginal cost and

benefits from automation that is independent of demand. The reason is that shocks to

demand raise both κi and ki leaving the ratio unchanged. Controlling for firm and sector-

year fixed effects should also purge this measure from any variation that is not driven by

firm-specific changes in the cost of automation. Nevertheless, a bias will still remain if fixed

effects do not fully absorb the impact of r and w, because factor prices have a direct effect

on the demand for labor, and not just through automation. In particular, an increase in

wages will lower the demand for labor for any given level of κi:

d ln li
d lnw

∣∣∣∣
κi

= −σ(1− κi)− κi < 0.

On the other hand, a decline in r, will increase the capital stock and the demand for labor

for any given level of κi:
d ln li
d ln r−1

∣∣∣∣
κi

= κi (σ − 1) > 0.

Identifying Causal Effects: Robot Exposure. To mitigate the concern that proxies for

automation may still be correlated with other characteristics that may affect the outcomes

of interest, the model suggests to focus on the interaction between industry- and firm-level

proxies of automation opportunities. It is well-known that the use of automation technologies

vary dramatically across industries. This suggests that the parameters capturing the cost and

benefits of automation, h−1 ln (w/r) in the model, are likely to have an important industry-

level component. At the same time, even within industries, firms differ significantly in

the structure of employment and hence in the replaceability of the tasks they perform, as

captured by the parameter ρi. The model then predicts variation in the costs and benefits of

automation, h−1 ln (w/r), to have a stronger effect on robot adoption, κi in firms performing

more replaceable tasks, ρi, as can be seen by rearranging (12):

1

1− κi
=

[(
1− 1

σ

)
piyi
h

ln
(w
r

)]ρi
.

Based on this insight, in the next sections, we build a measure for exposure to robots by
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combining information on which industries are more suitable for automation with firm-level

measures of replaceability of employment. The interaction between these variables allows

us to isolate the impact of the automation intensity of a sector on firms whose workers are

more substitutable with machines, while simultaneously netting out the direct effect that

each variable may have in isolation.

Finally, all these predictions have been derived in a model where the choice of automation

is continuous. In the data, however, the decision to automate is often measured by binary

variables. Nevertheless, as we show in Appendix C, a variant of the model where automation

is a discrete choice yields qualitatively similar predictions: a decline in the cost of capital

increases the probability that firms adopt a higher automation intensity, and the increase in

this probability is higher if tasks are easier to replace with machines.

3 Data and Aggregate Facts

Our empirical analysis uses firm-level data for France over the 1994-2013 period and combines

several firm-level datasets administered by the French statistical agency (INSEE). We observe

the universe of French firms (defined as legal entities) that report a complete balance sheet in

the manufacturing, services and primary sectors (roughly 500,000 firms per year), excluding

the government sector. Each firm is uniquely defined by a firm-level identifier (SIREN

number) common across all data sets. For each firm that reports a complete balance sheet, we

have data on sales, material purchases, capital stock (value of physical assets) and accounting

profits in Euros, as well as on total employment.10 We use this information to compute firm-

level value added11 and revenue TFP. We compute revenue TFP from a Cobb-Douglas value-

added production function with labor and physical capital as inputs and output elasticities

of inputs that vary at the 2-digit level of the NACE industrial classification. We use the

Wooldridge (2009) estimator for estimating the production-function coeffi cients.12

The balance sheet data are complemented with information on the occupational structure

10For the years 1994 to 2009 the source of this information is BRN. For 2011-2013 the data source is
FARE, which substitutes BRN and is more comprehensive in terms of coverage. This dataset is prepared by
INSEE and combines administrative data with survey information and also uses imputation. Compared to
BRN, it additionally includes firms that do not report a full balance sheet. We use the subset of FARE that
is consistent in terms of sample with BRN.
11Value added is computed as sales minus changes in inventories minus purchases of final goods minus

purchases of materials plus changes in material inventories minus other purchases.
12The Wooldrige estimator is based on the Levinsohn-Petrin (2003) methodology but uses a one-step GMM

estimator instead of a two-step approach. This estimator solves the problem that the labor coeffi cient may
be unidentified in the first stage if labor is freely adjustable (see Ackerberg, Caves and Frazer, 2015). We
consider labor endogenous and use lagged labor as an instrument.
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of employment from DADS Etablissement. For each sample year, DADS Etablissement

contains plant-level employment data disaggregated in five two-digit occupations: (1) firm

owners receiving a wage; (2) high-skill professions (i.e., scientists, managers, and engineers);

(3) intermediate-skill professions (e.g., teachers, administrative assistants, and technicians);

(4) low-skill white-collar workers; and (5) blue-collar workers. We aggregate the occupational

employment data from DADS across all plants belonging to the same firm using the SIREN

identifier, thereby obtaining the occupational structure of employment for each firm in a given

year. For the year 1994, DADS contains more disaggregated information on employment for

29 occupations. As explained in Section 5, we exploit this information for measuring the

extent to which employment is replaceable by robots in each firm; we use this variable for

the construction of a proxy for robot exposure, which we employ to identify the effects of

automation on firm-level outcomes. For the descriptive analysis, we use the full set of years

(1994-2013) while for identification we focus on the 1996-2013 period and use 1994 as a

pre-sample period.

For each firm and year, we also have customs data on exports and imports from the

French customs authority (DOUANE). We observe quantities and values of imports and

exports for all 8-digit products of the Combined Nomenclature (CN) classification by origin

and destination country. We leverage the detailed information on firm-level imports by

product to build proxies for the use of robots within firms. The CN classification records

trade in industrial robots into a specific product code, CN 84795000 (CN 84798950 before

1996). We identify firms that import robots in a given year as firms with positive imports

for this product code in that year. We also measure the stock of robot capital employed by

a firm at a given point in time as the sum of robot imports by the firm up to that point.

For each firm, we thus have a proxy not only for whether it adopts robots or not but also

for the intensity with which it uses robots in production.

The wide coverage of the import data, coupled with the possibility of constructing con-

tinuous measures of robot intensity, represents the key strengths of our automation variables

compared to the typical binary indicators of robot adoption based on firm-level surveys. At

the same time, the use of import data requires two caveats. First, these data do not include

purchases of robots from domestic suppliers. As a consequence, the results obtained from

this data may not generalize to firms that source robots mostly domestically. We refer to this

concern as the problem of “missing robots”. While these instances of adoption are relatively

rare in a country like France, our identification strategy will exploit variation in proxies

for robot exposure based on technological characteristics that are observed for all firms, in-
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Figure 1: Robot Imports, 1994-2013

cluding those that do not purchase robots from abroad. Second, our data may also include

imports of robots by robot integrators or resellers, which do not represent actual instances of

adoption. We refer to firms that import but do not use robots as “false positives”. To allay

the concern that these firms may bias the results, we exclude robot resellers from the analysis

by restricting the sample to manufacturing firms and we drop the “Installation and Repair

of Machinery and Equipment”industry. The sector of operation and the characteristics of

robot importers, such as sales and size, in our final sample make it unlikely that these are

just robot integrators. Consistently, we find that our firm-level proxies align well with the

commonly-used industry-level measure of the stock of installed robots from the IFR.

Figure 1 plots the time series of total robot imports into France obtained by summing

up robot imports across all French firms (hollow circles). For comparison, the figure also

plots the time series of total French robot imports obtained from the Comext database (full

circles). The firm-level data follow quite closely the evolution of aggregate French robot

imports implied by offi cial statistics, and account for the majority of these imports in any

given year. Interestingly, robot imports are quite volatile, consistent with the lumpy nature

of this investment. Yet, due to this steady investment, the stock of imported robot capital

has markedly increased over time, from 63 million Euros in 1994 to around 1.8 billion Euros
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Figure 2: Cumulative Number of Robot Importers by Two-Digit Sector

in 2013. Overall, these numbers suggest that automation has become increasingly widespread

in France over the sample period.

Figure 2 reports the cumulative number of robot importers by 2-digit manufacturing

sector. While robot importers are observed in many different sectors, they are particularly

frequent in the production of motor vehicles, machinery, and electrical equipment. Since our

data lack information for the two biggest car manufacturers in France, robot importers are

undercounted in the “Manufacturing of Motor Vehicles”industry.13 Yet, we will show that

our main results are unchanged if this industry is excluded. The cross-sectional distribution

of robot importers align well with other data sources. In particular, after removing “Man-

ufacturing of Motor Vehicles”, the correlation between the number of robot importers and

the stock of installed robots from the IFR is 0.79.

Overall, our baseline sample of manufacturing firms includes roughly 800 different enter-

prises importing robots at least once over the period of analysis. This number is consistent

with other existing studies. For instance, Acemoglu, Lelarge and Restrepo (2020), who

13For large multinational firms (e.g., Peugeot Société Anonym and Renault), INSEE reports only consoli-
dated balance sheets of the entire group. Since the identity and composition of these groups is not constant
across periods, they cannot be included for comparisons over time.
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collected information on robot adoption in France from multiple sources, find that only 1

percent of the firms in their sample purchased robots over the 2010-2015 period. We further

focus on firms with more than ten employees given that robots are typically used at relatively

large firms and adoption decisions by small firms tend to be more noisy and lumpy. However,

the qualitative pattern of our results is largely insensitive to the choice of the sample.

While robot adopters, i.e., firms importing robots at least once over the sample period, are

a small minority of firms, they account for a large and increasing fraction of manufacturing

activity. This trend clearly emerges from Figure 3, which shows the share of employment and

value added accounted for by robot adopters in any given year. To avoid the increasing trends

being driven by the growth in the number of adopters over time, all shares are computed

for a consistent sample of firms that are active in all years and import robots at least once

over 1994-2013.14 The share of robot adopters in manufacturing employment and value

added has rapidly increased over time to reach 8 and 14 percent, respectively, in 2013. This

indicates that robot adopters are faring better than other manufacturing firms. Moreover,

the fact that the value added share has grown significantly more than the employment share

suggests that the expansion of robot adopters may have been accompanied by the adoption

of labor-saving technologies.15

4 Preliminary Evidence: Robot Adoption and Firm-Level Outcomes

In this section, we provide descriptive evidence on the relationship between robot adoption

and firm-level outcomes. We start by studying how firms that adopt robots compare to

firms that do not in terms of various characteristics. Table 1 reports summary statistics

on a number of firm-level variables, separately for firms that import robots at least once

over 1994-2013 ("robot adopters") and for firms that do not import robots over this period

("non robot adopters"). Our sample consists of 64,173 manufacturing firms. Of these, 765

are robot adopters, corresponding to approximately 1 percent of the total number of firms

and firm-year observations in the dataset. Robot intensity, defined as the ratio between the

stock of robot capital and the total physical capital stock of the firm, equals 7.8 percent

on average for robot adopters. The average robot adopter is around 11 times larger than

14This however implies that we undercount the number of robot importers in earlier years, as some of
these firms may exit.
15Preliminary evidence from a 2019 survey run by the US Census shows similar patterns. In particular,

Acemoglu et al. (2021) report that about 2% of firms use robotics for automation and these firms account
for about 15% of employment.
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The figure plots the shares of French manufacturing value added and employment accounted
for by a consistent sample of firms that import robots at least once over 1994-2013 and are
active in all years.

Figure 3: Value Added and Employment Shares of Robot Adopters
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the average non robot adopter in terms of employment and around 14 times larger in terms

of sales. Robot adopters also exhibit around 3 times higher levels of sales per worker and

around 1.5 times higher levels of TFP, on average. The skill composition of employment

also differs across robot adopters and non robot adopters, with the share of employment in

high-skill professions roughly twice as high on average in the former group of firms than in

the latter. Finally, robot adopters are more likely to import and export goods other than

robots, and make 16 times higher profits than non robot adopters, on average.

Table 1 also reports the average annualized change in each variable over 1994-2013,

separately for the two sets of firms. Robot adopters increased robot intensity at an average

rate of 0.18 log points per year. While employment decreased in both groups of firms, robot

adopters shed workers at a slower rate than non robot adopters (0.016 vs. 0.03 log points

per year, respectively).16 Robot adopters also experienced a relatively slower reduction in

sales, sales per worker, TFP, and profits, and a relatively faster increase in the employment

share of high-skill professions.

To gain further insight on the differences between the two groups of firms, we estimate

conditional correlations between robot adoption and firm-level characteristics by running

OLS regressions of the following form:

Yit = αi + αht + β · Adoptionit +X′it · γ + εit, (17)

where i denotes a firm; h indicates the 3-digit NACE sector in which the firm operates; and

t stands for time. Yit is an outcome and Adoptionit is a dummy that takes on value 1 in the

first year in which the firm imports robots and in all subsequent periods, and is equal to 0

otherwise. We estimate two versions of eq. (17). In the first version, we control for firm fixed

effects, αi, and for 3-digit sector×year fixed effects, αht. The "robot adoption premia", β, are
then identified by comparing outcomes, in deviations from within-firm means, across firms

belonging to the same 3-digit sector and year. This approach ensures that the coeffi cients

β are not contaminated by time-invariant firm characteristics that could be correlated with

adoption and outcomes, by differences in the distribution of adopters and non adopters across

sectors and by sector-specific shocks. In the second version of eq. (17), we add controls for

observable firm characteristics, namely, log sales and dummies for firms that export or import

goods other than robots. We measure each of these three characteristics at baseline, that

is, in the first year in which the firm is observed in the sample, and interact its first-year

16Manufacturing employment declined significantly in France during the sample period.
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Table 1: Descriptive Statistics

Obs. No. Firms Mean Median Std. Dev.  Mean D  
(annualized)

Adoption 6,373  765   1 1   1 0
Robot Intensity 6,373  765  0.078  0.005  0.520  0.182
No. of Employees 6,373  765  852  191  3,129  -0.016
Empl. Sh. High Skill 6,373  765  0.153  0.108  0.142  0.006
Sales (€'000) 6,373  765  761,597  46,050  6,812,860  -0.075
Sales per Worker (€'000) 6,373  765  1,912  226  104,935  -0.061
VA per Worker (€'000) 6,225  761  178  65  2,715  -0.070
TFP 6,218  760  426  170  2,625  -0.066
Profits (€'000) 6,373  765  19,855  529  223,342  -0.052
Dummy Importer 6,373  765  0.972  1  0.164  0.001
Dummy Exporter 6,373  765  0.947  1  0.224  0.002
Export Price Index 6,039  750  242  22  2,045  0.014

Adoption 598,925  63,408  0 0 0 0
Robot Intensity 586,785  63,448  0 0 0 0
No. of Employees 598,925  63,448  78  27  313  -0.030
Empl. Sh. High Skill 598,925  63,448  0.081  0.056  0.106  0.003
Sales (€'000) 598,922  63,448  54,703  7,615  683,130  -0.092
Sales per Worker (€'000) 598,922  63,448  666  231  11,725  -0.063
VA per Worker (€'000) 587,342  62,741  190  71  1,973  -0.066
TFP 576,404  62,005  292  132  1,362  -0.071
Profits (€'000) 598,925  57,293  1,256  98  36,795  -0.065
Dummy Importer 598,925  63,448  0.568  1  0.495  0.001
Dummy Exporter 598,925  63,448  0.561  1  0.496  0.004
Export Price Index 335,886  42,346  280  14  16,844  0.012

Robot Adopters

Non Robot Adopters

The whole sample consists of all manufacturing firms with more than 10 employees excluding firms in the "Installation
and Repair of Machinery and Equipment" industry (64,173 firms). Adoption is a dummy taking on value 1 since the
first year in which a firm imports robots. Robot Intensity is the ratio between the stock of robot capital and the total
capital stock of the firm; the stock of robot capital is constructed as the sum of robot imports over time. Importer and
Exporter are dummies taking on value 1 if the firm imports (resp. exports) goods other than robots in a given year and
0 otherwise. Export Price Index is the export-value-weighted average of export unit values across 8-digit products of
the Combined Nomenclature classification. All statistics are computed on firm-level observations for the 1994-2013
period. Changes are computed as annualized log differences, except for Employment Sh. High Skill , Exporter and
Importer , for which annualized changes in levels are reported.
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Table 2: Firm-Level Outcomes and Robot Adoption, Panel (OLS)

(1) (2) (3) (4) (5) (6)

Adoptionit 0.225*** 0.227*** 0.084*** 0.100*** 0.044*** 0.082***
[10.034] [10.210] [4.622] [5.487] [3.074] [5.665]

Obs. 597,497 596,174 598,887 597,290 597,497 596,174
R2 0.95 0.95 0.87 0.87 0.91 0.91

Adoptionit 0.022 0.055*** 0.062*** 0.074*** 0.012*** 0.003
[1.445] [3.525] [4.068] [4.804] [4.478] [1.048]

Obs. 587,151 585,896 576,168 574,954 598,887 597,290
R2 0.85 0.85 0.87 0.87 0.69 0.70

Firm FE Yes Yes Yes Yes Yes Yes
Sector × Year FE Yes Yes Yes Yes Yes Yes
Controls No Yes No Yes No Yes
The subscripts i and t denote firms and years, respectively. The dependent variables are annual
observations of the firm-level outcomes indicated in columns' headings. Adoption it is a dummy equal to
1 for all years since the firm starts importing robots, and equal to 0 otherwise. Sector refers to 3-digit
sectors. The control variables included in columns (2), (4) and (6) are log sales and dummies for whether
the firm is an importer or an exporter, observed in the first year in which the firm appears in the sample
and interacted with a full set of year dummies. Standard errors are corrected for clustering within firms; t-
statistics are reported in square brackets. ***, **, *: denote significance at the 1, 5 and 10% level,
respectively.

Ln Sales Ln No. of Employees Ln Sales per Worker

Empl. Sh. High SkillLn VA per Worker Ln TFP

value with a full set of year dummies. The resulting interactions, contained in the vector

Xit, flexibly control for heterogeneous trends across firms characterized by different initial

conditions. We correct the standard errors for clustering at the firm level to account for

serially correlated shocks within firms, and we report t-statistics in square brackets.

The results are reported in Table 2. Odd-numbered columns show estimates from the

specification including only firm and sector×year fixed effects. Even-numbered columns

report results from the specification containing also the interactions between year dummies

and the initial-period values of log sales and of the indicators for importing and exporting

firms. Both specifications are estimated for six major outcomes on which we focus throughout

the paper: (i) log sales, (ii) log employment, (iii) log sales per worker, (iv) log value added per

worker, (v) log TFP, and (vi) the employment share of high-skill professions. All estimates of

β are positive and, except for two cases, they are also highly statistically significant. These

results confirm that robot adopters are larger, more productive, and more skill-intensive
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than non robot adopters, even when accounting for time-invariant firm characteristics, firm-

specific trends and the sector of operation.

The differences between robot adopters and non robot adopters may have two interpre-

tations: either robot adopters differ from other firms already before adopting robots, or they

start diverging afterwards. To shed light on this question, we use a difference-in-differences

event study approach to analyze how the six outcomes evolve over time in firms that adopt

robots relative to firms that do not. To this purpose, we extend eq. (17) by adding the first

five lags and leads of Adoptionit:

Yit = αi + αht +
5∑

s=−5

βs · Adoptionit−s + εit. (18)

The coeffi cients βs estimated from eq. (18) illustrate how a given outcome evolves over time

within robot adopters relative to non robot adopters, over a ten-year window around the

first instance of robot imports (s = 0).

The results are reported in Figure 4, where each graph refers to a different outcome.

We report in Appendix D the estimation coeffi cients corresponding to each plot. The figure

shows that robot adoption is antedated by significant differences in the trends of sales and

employment between robot adopters and non robot adopters. In particular, the former

group of firms grow faster than the latter in terms of both variables over the five-year

period preceding adoption. Conversely, no clear differential pre-trend is detected in terms of

effi ciency and the skill composition of the workforce. After adoption, the diverging trend in

employment is reversed: while robot adopters still grow faster than non robot adopters, the

differential gradually vanishes. Robot adopters also experience a relatively stronger shift in

the skill composition of the workforce towards high-skill professions, and a faster increase

in effi ciency, which takes approximately two years to unfold. No differential trend is instead

observed in terms of sales after adoption, as sales stop diverging in robot adopters relative to

non robot adopters after s = 0. This suggests that the effi ciency gains from robot adoption

do not translate into higher revenues; we provide an interpretation for this fact in Section

5.5. Overall, these results suggest that robot adoption occurs after periods of expansion in

firm size, and is followed by employment losses, improvements in firm effi ciency, and labor

demand shifts towards high-skill workers, but limited changes in total sales.

Both the model and the preliminary evidence presented so far suggest that the correlations

between robot adoption and other firm characteristics may be confounded by demand shocks,

which are likely to influence both the outcomes of a firm and its choice to automate. The
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Each graph plots coefficients and confidence intervals on various lags and leads of Adoption it estimated
using eq. (18) for a different outcome variable (indicated in the heading of the graph). Adoption it is a
dummy that takes on value 1 in the first year in which a firm imports robots and in all subsequent
periods, and is equal to 0 otherwise. Lags and leads of Adoption it are indicated on the horizonthal axis of
each graph, with t=0 referring to the first year in which a firm imports robots. The estimated
coefficients corresponding to each graph are reported in Table A1. 

Ln VA per Worker Ln TFP

Ln Sales Ln No. Of Employees

Ln Sales per Worker Empl. Sh. High Skill

Figure 4: Difference-in-Differences Event Studies
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difference-in-differences event studies confirm the existence of pre-trends for employment and

sales, but also suggest that these trends may stop or even reverse after adoption. We close

this section by providing additional evidence on the possible role played by demand shocks.

To this purpose, we follow the model and regress outcomes on a continuous measure of robot

intensity, a variable that should be less contaminated by demand shocks compared to the

dicothomous indicator of adoption used until now. Then, we compare the results with the

patterns documented above.

Specifically, we estimate eq. (17) replacing the dummy Adoptionit with a continuous

measure of the intensity with which a firm uses robots, namely, the log ratio between the stock

of robot capital and the total capital stock of the firm. This variable, labeled lnRobIntit,

is a proxy for the theoretical measure introduced in eq. (16). By scaling robot capital with

the total capital stock of the firm, lnRobIntit neutralizes demand shocks, as long as the

latter proportionately affect both the numerator and the denominator of the ratio. The

log transformation implies that lnRobIntit is only defined for robot adopters. Because the

specification controls for firm and sector×year fixed effects, the coeffi cients β are identified
from changes in robot intensity over time within robot adopters, controlling for common

shocks hitting all firms in a sector.

The results are reported in Table 3. Odd-numbered columns refer to the specification

that only controls for firm and sector-year fixed effects, while even-numbered columns refer

to the specification with control variables (interactions of year dummies with initial firm size

and with indicators for the initial import and export status of the firm). Compared to the

results reported in Table 2, the estimate of β switches sign, from positive to negative, in

the regressions for sales and employment, and is highly statistically significant. This pattern

is consistent with demand shocks leading firms to both expand and automate, resulting

in a spurious positive correlation between robot adoption and firm size. However, once

demand shocks are neutralized, automation may lead to job displacement. In terms of

magnitude, multiplying the coeffi cient on lnRobIntit in the employment regression by the

average annual change in robot intensity reported in Table 1 (0.18 log points) implies that the

observed increase in robot intensity is associated with an average fall in employment equal

to 2.6 percent per year among robot adopters. The negative effect on sales suggests that

lnRobIntit may be partly driven by increases in wages, which trigger automation but also

raise production costs. Regarding the other outcomes, Table 3 continues to show positive

estimates of β across the board. While some coeffi cients are imprecisely estimated, the

qualitative pattern of the results suggests that automation is associated with improvements
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Table 3: Firm-Level Outcomes and Ln Robot Intensity, Panel (OLS)

(1) (2) (3) (4) (5) (6)

Ln RobIntit -0.118*** -0.136*** -0.144*** -0.144*** 0.015 0.014
[-3.936] [-4.675] [-5.802] [-5.780] [1.093] [0.944]

Obs. 6,368 6,324 6,373 6,329 6,368 6,324
R2 0.96 0.97 0.93 0.93 0.90 0.90

Ln RobIntit 0.031** 0.036*** 0.014 0.014 0.014*** 0.013***
[2.427] [2.732] [1.083] [1.082] [3.165] [2.923]

Obs. 6,200 6,155 6,195 6,150 6,373 6,329
R2 0.81 0.82 0.87 0.87 0.88 0.88

Firm FE Yes Yes Yes Yes Yes Yes
Sector × Year FE Yes Yes Yes Yes Yes Yes
Controls No Yes No Yes No Yes
The subscripts i and t denote firms and years, respectively. The dependent variables are annual
observations of the firm-level outcomes indicated in columns' headings. Ln RobInt it is the log ratio
between the stock of robot capital and the total capital stock of the firm. Sector refers to 3-digit sectors.
The control variables included in columns (2), (4) and (6) are log sales and dummies for whether the
firm is an importer or an exporter, observed in the first year in which the firm appears in the sample and
interacted with a full set of year dummies. Standard errors are corrected for clustering within firms; t-
statistics are reported in squared brackets. ***, **, *: denote significance at the 1, 5 and 10% level,
respectively.

Ln Sales Ln No. of Employees Ln Sales per Worker

Empl. Sh. High SkillLn VA per Worker Ln TFP

in firm effi ciency and shifts in labor demand towards high-skill workers.17

While lnRobIntit is less likely to be influenced by demand shocks than the binary in-

dicator Adoptionit, it may not fully neutralize these shocks, for instance, if the latter do

not affect robot capital and total capital proportionately. In addition, lnRobIntit could be

correlated with other firm characteristics that affect outcomes directly. Accordingly, the

estimates in Table 3 do not have a causal interpretation. Neveretheless, they suggest that

demand shocks seem to play an important role, significantly contaminating the estimated

relationship between automation and firm-level outcomes. Motivated by this evidence, in

the next section, we exploit differential cross-firm variation in robot exposure, exclusively

stemming from pre-determined technological characteristics, to purge away demand shocks

and identify a causal effect of automation on firm-level outcomes.

17As shown in Appendix D, these results are very similar if we compute the stock of robot capital using a
perpetual inventory method with an annual depreciation rate of 15 percent, which falls within the range of
depreciation rates normally assumed for robots in manufacturing (see, e.g., Graetz and Michaels, 2018).
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5 The Effect of Robot Exposure on Firm-Level Outcomes

Our model suggests that the predisposition of firms to automate depends on the interaction

of two technological characteristics: cost of machines and replaceability of employment.

In particular, a higher cost-advantage of machines should stimulate robot adoption, and

through this mechanism affect outcomes, relatively more in firms whose employment can

more easily be replaced by robots. In this section, we draw on this insight to build a proxy

for robot exposure whose variation exclusively depends on this interplay and not on demand

shocks. We first study how robot exposure affects outcomes and discuss the main threats to

identification. Then, we show that robot exposure is a significant predictor of robot adoption

by firms. Using these results, we quantify the effect that the variation in robot adoption

induced by robot exposure, as opposed to demand shocks, exerts on firm-level outcomes.

Consistent with the lumpy nature of the investment in robots, most of the variation in robot

adoption in our data is across firms rather than within firms over time. Accordingly, from

now on, we focus on long-run changes in adoption and outcomes, and exploit cross-firm

variation.

5.1 Variables and Specification

To construct the proxy for robot exposure, we follow two insights. First, the different nature

of the production process across industries makes production easier to automate in some

industries than in others. Second, within a given industry, some firms are more prone to

automate production than other firms, because they perform activities that are relatively

easier to assign to robots. Accordingly, we obtain the variable RobExp as the interaction

between a proxy for how suitable production is for automation in an industry, RobSuit, and

a proxy for the ease with which robots can replace worker activities within a given firm,

Repl. We now explain these variables in detail.

For each firm i operating in a given 5-digit NACE industry j, RobSuit is defined as the

average robot intensity of all firms i′ 6= i ∈ j, namely,

RobSuitj−i = sinh−1

(∑
i′ 6=i∈j RobStocki′∑
i′ 6=i∈j CapStocki′

)
, (19)

where RobStocki′ and CapStocki′ denote, respectively, the initial stock of robots and the

initial total capital stock of firm i′ 6= i ∈ j. The hyperbolic sine transformation preserves the
zeros. Industries in which this ratio is higher are relatively more suitable for automation.
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As for Repl, we follow Graetz and Michaels (2018) and exploit cross-firm differences

in the prevalence of tasks that can be assigned to robots. Our measure is similar to the

Graetz and Michaels (2018) indicator but is defined at the firm-level rather than at the

industry level. To build this measure, we start by sourcing from Graetz and Michaels (2018)

information on whether each of 377 US Census occupations is replaceable or not. The

authors define an occupation as replaceable if its title corresponds to at least one of the

robot application categories identified by the IFR, such as welding, painting, and assembling.

Then, we manually map each US Census occupation into the 29 French occupations for

which we have employment data in 1994. Using this information, we construct the firm-level

replaceability measure as follows:

Repli =
29∑
o=1

ωoi ·Replo, (20)

where Replo is the replaceability of French occupation o and ωoi is the share of occupation

o in firm i’s employment in 1994.

Finally, RobExp is obtained as

RobExpi = RobSuitj−i ·Repli. (21)

This variable captures variation in robot exposure across firms that operate in industries with

different suitability for automation and exhibit a different prevalence of automatable tasks in

production. BecauseRobExpi is solely based on pre-determined technological characteristics,

its variation is not contaminated by demand shocks concurrent to the growth in outcomes.18

With these variables in hand, our empirical approach consists of estimating specifications

of the following form:

∆Yi = αh + β1 ·RobExpi + β2 ·RobSuitj−i + β3 ·Repli +X′i · γ + εi, (22)

where ∆Yi is the annualized change in outcome Y for firm i between the first and the last

year in which the firm is present in the sample; αh are 3-digit sector fixed effects; Xi are

start-of-period values of log firm sales and of indicators for exporting and importing firms;

and εi is an error term. The use of long differences eliminates year-to-year variation, so

18See Appendix D (Table D3) for descriptive statistics on RobExpj−i and the other variables used in this
section.
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identification exploits cross-sectional (across firms) variation in the pre-determined level of

robot exposure and in the long-run growth of outcomes. Specifically, because the sector

fixed effects, αh, absorb differential trends in outcomes across sectors, the coeffi cients β1 are

identified from differential robot exposure across firms and 5-digit industries within the same

3-digit sector: firms that are more exposed to robots in a sector are those with higher levels

of Repli operating in industries with higher levels of RobSuitj−i. The covariates, Xi, further

remove heterogeneous trends across firms characterized by different initial conditions within

the same sector. In particular, these variables account for the fact that larger and more

trade-oriented firms may be more exposed to robots and may systematically follow different

paths in terms of key outcomes compared to other firms.

Being based on pre-determined technological characteristics, Repli and RobSuitj−i do not

respond to subsequent changes in firm-level outcomes. However, these variables could still be

correlated with other firm or industry variables affecting the outcomes of interest. Moreover,

neither Repli nor RobSuitj−i alone fully captures a firm’s exposure to robots. For instance,

the fact of operating in an industry in which production is highly suitable for automation may

not matter much for firms whose tasks cannot be easily assigned to robots. For these reasons,

our empirical approach goes beyond the simple level effects of these variables and identifies

instead their interaction in the spirit of a difference-in-differences specification. This better

reflects the idea that robot exposure depends on the interplay between replaceability and

automation suitability, rather than on each of these characteristics in isolation. Moreover,

being identified by both firm- and industry-level variation, the interaction coeffi cients β1 are

less likely to be confounded by omitted firm or industry characteristics than the linear terms.

After presenting the baseline results, we go back to our empirical strategy and show that the

estimates of β1 are unlikely to be driven by the main remaining threats to identification.

5.2 Baseline Results and Sensitivity Analysis

To help comparing the long-differences results with our preliminary evidence, we first esti-

mate eq. (22) replacing RobExpi with a binary indicator for adoption, Adopteri. This is a

dummy that takes on value 1 if firm i starts importing robots over the sample period, and is

equal to 0 both for non-adopters and for firms that were already using robots initially. The

coeffi cients on Adopteri reflect cross-sectional differences in the growth of outcomes between

robot adopters and other firms. The results are reported in Table 4, where standard errors

are corrected for clustering within 5-digit industries to account for possibly correlated shocks

among firms in the same industry. The dependent variables, indicated in the columns’head-
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Table 4: Firm-Level Outcomes and Robot Adoption, Long Differences (OLS)

(1) (2) (3) (4) (5) (6)

Adopteri 2.590*** 4.549*** 2.185*** 2.366*** 0.457 2.128***
[6.482] [10.898] [6.837] [7.505] [1.128] [4.626]

Obs. 36,301 36,301 36,606 36,584 36,301 36,301
R2 0.06 0.08 0.03 0.03 0.04 0.06

Adopteri 0.031 1.719*** 0.493 1.976*** 0.140*** 0.004
[0.075] [3.986] [1.308] [5.328] [3.009] [0.100]

Obs. 35,180 35,180 33,623 33,623 36,606 36,584
R2 0.03 0.04 0.04 0.05 0.02 0.03

Controls Sector FE All Controls Sector FE All Controls Sector FE All Controls
The subscript i denotes firms. In each regression, the dependent variable is 100 x the annualized change in
the firm-level outcome indicated in the corresponding column. Adopter i is a dummy equal to 1 for firms
that start importing robots over the sample period and equal to 0 for non-importers. Sector fixed effects are
dummies for 3-digit sectors. The control variables included in columns (2), (4) and (6) are the initial firm-
level employment share of occupations that can be replaced by robots (Repl i ), the initial ratio between the
overall stock of robots and the total capital stock of all other firms in each 5-digit industry j (RobSuit j-i ), and 
the initial values of log sales and dummies for importing and exporting firms. Standard errors are corrected
for clustering within 5-digit industries; t-statistics are reported in square brackets. ***, **, *: denote
significance at the 1, 5 and 10% level, respectively.

D Ln TFP

D Ln Sales Δ Ln No. of Employees

D Ln VA per Worker

D Ln Sales per Worker

D Empl. Sh. High Skill

ings, are log changes in sales, employment, sales per worker, value added per worker and

TFP, and the change in the employment share of high-skill professions; all changes are mul-

tiplied by 100 to express them in percentages.19 For each outcome, the table presents results

both from a specification including only the sector fixed effects αh (odd-numbered columns)

and from the complete specification including also the control variables Xi (even-numbered

columns). Consistent with our preliminary evidence, firms that adopt robots over the sample

period experience a relatively larger increase in size, a relatively stronger improvement in

effi ciency, and a relatively faster shift in labor demand towards high-skill workers.

These results may be biased by demand shocks if the latter influence both adoption and

outcomes. Hence, we now turn to estimating eq. (22). The results are reported in Table

5, where each column refers to a different outcome. In the regression for log employment,

the coeffi cient on Repli is negative and statistically significant in line with the model. More

importantly, the coeffi cient on RobExpi is also negative and precisely estimated, implying

that firms that are more exposed to robots, owing to the interplay between their pre-sample

19We winsorize the change in each outcome at the top and bottom 5 percent of the distribution to prevent
results from being driven by extreme observations.
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Table 5: Firm-Level Outcomes and Robot Exposure, Long Differences
(1) (2) (3) (4) (5) (6)
D Ln Sales Δ Ln No. of 

Employees
D Ln Sales per 
Worker

D Ln VA per 
Worker

D Ln TFP D Empl. Sh. 
High Skill

RobExpi 0.043 -0.094** 0.185** 0.197** 0.138* 0.009***

[0.517] [-2.589] [2.381] [2.276] [1.726] [2.688]
Repli -1.203 -3.873*** 3.685** 3.171* 1.338 -0.116*

[-0.697] [-5.572] [2.371] [1.868] [0.839] [-1.673]
RobSuitj-i 45.832 -47.570*** 99.543 68.418 39.260 13.211***

[0.754] [-4.584] [1.521] [0.994] [0.649] [9.548]
Ln Initial Salesi -1.444*** -0.009 -1.374*** -1.392*** -1.216*** 0.071***

[-11.245] [-0.167] [-10.165] [-10.616] [-10.345] [10.250]
Dummy Initial Importeri 1.501*** 0.127 1.409*** 1.458*** 1.410*** 0.048**

[6.370] [0.927] [6.766] [6.887] [7.049] [2.369]
Dummy Initial Exporteri 0.637*** -0.480*** 1.145*** 1.039*** 0.914*** 0.067***

[3.057] [-3.523] [5.655] [4.852] [4.910] [3.699]
Obs. 36,301 36,584 36,301 35,180 33,623 36,584
R2 0.07 0.03 0.06 0.04 0.05 0.03

Sector FE Yes Yes Yes Yes Yes Yes
The subscripts i and j denote firms and 5-digit industries, respectively. In each regression, the dependent variable is 100 x
the annualized change in the firm-level outcome indicated in the corresponding column. RobExp i is the product between
the initial firm-level employment share of occupations that can be replaced by robots (Repl i ) and the initial ratio between
the overall stock of robots and the total capital stock of all other firms in each 5-digit industry j (RobSuit j-i ). Sector fixed
effects are dummies for 3-digit sectors. Standard errors are corrected for clustering within 5-digit industries; t-statistics are
reported in square brackets. ***, **, *: denote significance at the 1, 5 and 10% level, respectively.

specialization in automatable tasks and their industry’s initial suitability for automation,

experience a relatively larger and statistically significant reduction in employment over the

sample period. Comparing this result with the regressions reported in Table 4 indicates that

this effect is masked when using direct measures of adoption, due to the confounding role of

demand shocks.

Turning to the other outcomes, Table 5 exhibits positive and statistically significant co-

effi cients on RobExpi in the regressions for the log changes in sales per worker, value added

per worker, and TFP. The table also shows a positive and precisely estimated coeffi cient

on RobExpi in the regression for the change in the employment share of high-skill profes-

sions. Hence, firms that are more exposed to robots experience relatively larger increases in

effi ciency and relatively stronger shifts in labor demand towards high-skill workers. Interest-

ingly, the effect of robot exposure on total sales, albeit positive, is not statistically significant.

While reinforcing the view that demand shocks bias the relation between robot adoption and

firm size, this result further suggests that the productivity gains from automation may not

translate into higher sales.

Table 6 contains an extensive sensitivity analysis on the previous results. In panel a),

we weigh the observations by the initial number of employees in each firm. The estimated
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coeffi cients are very similar to those obtained from unweighted regressions, suggesting that

our evidence does not change if large firms are given greater weight. In panel b), we further

exclude firms in the "Manufacturing of Motor Vehicles" industry, as the latter is one of the

largest users of robots and our data lack information for the two biggest French car manufac-

turers. The qualitative and quantitative pattern of results is however unchanged. In panel c),

we extend the notion of robots in the definition of automation suitability to include not just

industrial robots (CN 84795000) but all types of machinery designed for lifting, handling,

loading, unloading and welding (CN 842489, 842890, 851580, 851531, 851521 and 84864). In

this case, the estimated coeffi cients on robot exposure lose precision and the coeffi cient in

the employment regression turns positive, although it is not statistically significant. Robot

exposure still leads to stronger shifts in labor demand towards high-skill professions. These

results are consistent with the notion that broader forms of capital equipment are in gen-

eral complementary to labor, as found in Aghion et al. (2019), and especially to high-skill

workers.

Next, we study how the effect of robot exposure varies with the elasticity of demand.

The model predicts that in industries where demand is more elastic, the productivity effect

of automation should be stronger because firms can scale up production without large reduc-

tions in prices. As a result, employment should be less likely to fall at firms facing a more

elastic demand. While a similar point has been made in Bessen (2019), who also provides

some historical evidence from US industries, our rich firm-level data seem especially well

suited to address this question. Hence, we extend eq. (22) by interacting RobExpi, Repli,

and RobSuitj−i with the elasticity of substitution in each sector.20 Consistently with the

model, the results reported in panel d) show that robot exposure causes a relatively larger

increase in sales in sectors where products are more substitutable. Similarly, robot exposure

has a relatively less negative effect on employment in sectors where demand is more elastic.

The point estimate implies that the effect of robot exposure switches sign, from negative to

positive, when the elasticity of demand is higher than 10, i.e., in roughly 10 percent of the

sectors in our sample. Finally, the effect of robot exposure on productivity is also relatively

stronger in sectors where products are more substitutable.

In the last robustness check, we use an alternative proxy for robot exposure, which is

obtained by replacing RobSuitj−i in eq. (21) with the initial value of the log stock of installed

20We source estimates of the elasticity of substitution from Broda and Weinstein (2006). We use estimates
based on US import data over the 1990-2001 period for 5-digit SITC Rev. 3 codes and convert them to
3-digit NACE sectors. The linear term in the elasticity of substitution is subsumed by the sector fixed effects
αh.
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Table 6: Firm-Level Outcomes and Robot Exposure, Long Differences (Robustness Checks)

(1) (2) (3) (4) (5) (6)

D Ln Sales Δ Ln No. of 
Employees

D Ln Sales 
per Worker

D Ln VA per 
Worker

D Ln TFP D Empl. Sh. 
High Skill

RobExpi 0.027 -0.117*** 0.191** 0.209** 0.144* 0.009***

[0.299] [-3.263] [2.269] [2.259] [1.691] [2.931]
Obs. 36,301 36,584 36,301 35,180 33,623 36,584
R2 0.07 0.04 0.05 0.04 0.04 0.04

RobExpi 0.042 -0.095*** 0.183** 0.196** 0.136* 0.008**

[0.498] [-2.602] [2.356] [2.263] [1.708] [2.460]
Obs. 35,759 36,040 35,759 34,647 33,109 36,040
R2 0.07 0.03 0.06 0.04 0.05 0.03

RobExpi 0.105 0.007 0.128 0.127 0.081 0.010***

[1.287] [0.163] [1.596] [1.530] [1.080] [3.143]
Obs. 36,301 36,584 36,301 35,180 33,623 36,584
R2 0.07 0.03 0.06 0.04 0.05 0.03

RobExpi -0.472*** -0.207** -0.241 -0.389** -0.427** -0.000

[-2.693] [-2.309] [-1.389] [-2.003] [-2.241] [-0.052]
RobExpi x Elasth 0.123*** 0.025* 0.104*** 0.138*** 0.132*** 0.002

[3.546] [1.698] [2.962] [3.382] [3.242] [1.189]
Obs. 32,427 32,679 32,427 31,365 29,956 32,679
R2 0.08 0.03 0.06 0.05 0.06 0.04

RobExpi 3.545*** 0.320 3.424*** 3.557*** 3.294*** 0.066**

[12.243] [1.491] [13.569] [12.659] [11.887] [2.506]
Obs. 36,301 36,584 36,301 35,180 33,623 36,584
R2 0.08 0.03 0.06 0.05 0.05 0.03
The subscripts i and h denote firms and 3-digit sectors, respectively. In each regression, the dependent variable is 100 x the
annualized change in the firm-level outcome indicated in the corresponding column. With the exception of panel e), RobExp i

is the product between the initial firm-level employment share of occupations that can be replaced by robots (Repl i ) and the
initial ratio between the overall stock of robots and the total capital stock of all other firms in each 5-digit industry j  (RobSuit j-

i ). In panel e), RobExp i is constructed by replacing RobSuit j-i with the log stock of installed robots in each firm's sector; data
on the stock of installed robots are sourced from the International Federation of Robotics (IFR) and available for 13
manufacturing sectors. The regressions in panel a) are weighted by the initial number of employees in each firm. The sample
in panel b) excludes firms in the "Manufacturing of Motor Vehicles" industry. In panel c), robot imports include CN codes
842489, 842890, 851580, 847950, 851531, 851521 and 84864. In panel d), Elast h is the elasticity of demand, defined at the 3-
digit sector level; the specification also includes interactions of Elast h with Repl i and RobSuit j-i (coefficients unreported). All
regressions also include the linear terms in Repl i and RobSuit j-i , initial values of log sales and dummies for importing and
exporting firms, and 3-digit sector fixed effects. Standard errors are corrected for clustering within 5-digit industries; t-
statistics are reported in square brackets. ***, **, *: denote significance at the 1, 5 and 10% level, respectively.

e) Alternative Proxy for Robot Exposure (IFR)

a) Weighted Regressions

b) Excluding Manufacturing of Motor Vehicles

c) Broader Definition of Robot Imports

d) Interactions with Demand Elasticity
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robots in each firm’s sector in the US. We source this variable from the IFR. Being based

on overall robot installations, rather than robot imports, this variable is likely to provide

a better proxy for automation suitability in industries where firms predominantly source

robots from domestic suppliers. In particular, it is immune to the issues of “missing robots”

or “false positives”. Morever, being based on data for the US rather than France, this

variable further allays concerns related to endogeneity and omitted industry characteristics.

At the same time, a key drawback of this variable is that the IFR data are only available for

13 aggregate manufacturing sectors, so variation is much more limited than for the baseline

measure of automation suitability.

Despite these differences, the qualitative evidence is preserved also with the alternative

proxy for robot exposure. In particular, compared to the OLS estimates for robot adoption

shown in Table 4, the coeffi cient on RobExpi in the regression for the log change in employ-

ment is not statistically significant, consistent with demand shocks inducing an upward bias

in the relation between robot adoption and employment. At the same time, the alternative

proxy confirms the positive effects of robot exposure on effi ciency, the skill composition of

labor demand and now even on sales.

Overall, this sensitivity analysis reassures that the main results do not hinge on specifica-

tion details, sample composition and definitions of variables, and that they square reasonably

well with additional predictions of the model. In the next section, we deal with the main

remaining threats to identification and discuss how these threats could influence the results.

5.3 Threats to Identification

Our identification strategy requires that, conditional on the fixed effects and control variables

included in eq. (22), RobExpi is uncorrelated with omitted variables that could influence

the outcomes. Because RobExpi is the interaction between Repli and RobSuitj−i, this iden-

tifying assumption could be violated in two cases: (i) if Repli was correlated with other

firm characteristics that affect outcomes differentially across industries with varying levels

of automation suitability; and (ii) if RobSuitj−i captured other industry characteristics af-

fecting outcomes heterogeneously across firms with different degrees of replaceability. To

discuss the implications of these threats, we now extend the baseline specification by adding

interactions of Repli and RobSuitj−i with some of the most likely confounders, and study

how the coeffi cients on RobExpi are affected.

In panel a) of Table 7, we add the interaction between RobSuitj−i and the routine in-
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Table 7: Firm-Level Outcomes and Robot Exposure, Long Differences (Threats to Identifi-
cation)

(1) (2) (3) (4) (5) (6)
D Ln Sales Δ Ln No. of 

Employees
D Ln Sales 
per Worker

D Ln VA per 
Worker

D Ln TFP D Empl. Sh. 
High Skill

RobExpi 0.044 -0.092** 0.183** 0.193** 0.134* 0.008**

[0.529] [-2.547] [2.372] [2.251] [1.686] [2.571]
RobSuitj-i x Routinei 11.123 8.213 3.297 24.093 22.625 0.527

[0.436] [1.559] [0.124] [0.908] [0.971] [1.166]
Obs. 36,301 36,584 36,301 35,180 33,623 36,584
R2 0.07 0.03 0.06 0.04 0.05 0.03

RobExpi 0.023 -0.094** 0.165** 0.171** 0.110 0.010***

[0.284] [-2.578] [2.134] [1.986] [1.386] [2.890]
Obs. 36,301 36,584 36,301 35,180 33,623 36,584
R2 0.07 0.03 0.06 0.04 0.05 0.03

RobExpi 0.082 -0.096** 0.230*** 0.244*** 0.182** 0.010***

[0.903] [-2.594] [2.624] [2.639] [2.130] [2.886]
Obs. 36,301 36,584 36,301 35,180 33,623 36,584
R2 0.08 0.03 0.06 0.05 0.05 0.03

RobExpi 0.062 -0.114*** 0.226** 0.252*** 0.186** 0.012***

[0.685] [-3.092] [2.593] [2.761] [2.224] [3.327]
Obs. 36,254 36,537 36,254 35,134 33,579 36,537
R2 0.08 0.03 0.06 0.05 0.05 0.03

RobExpi 0.026 -0.094** 0.166** 0.172** 0.118 0.010***

[0.306] [-2.506] [2.092] [1.975] [1.471] [2.875]
Obs. 36,301 36,584 36,301 35,180 33,623 36,584
R2 0.08 0.03 0.06 0.04 0.05 0.03
The subscripts i and j denote firms and 5-digit industries, respectively. In each regression, the dependent variable is
100 x the annualized change in the firm-level outcome indicated in the corresponding column. RobExp i is the
product between the initial firm-level employment share of occupations that can be replaced by robots (Repl i ) and
the initial ratio between the overall stock of robots and the total capital stock of all other firms in each 5-digit
industry j (RobSuit j-i ). In panel a), Routine i is the initial firm-level employment share of routine-intensive
occupations; the specification also includes the linear term in Routine i (coefficient unreported). The specifications in
panel b) and c) include interactions of RobSuit j-i and Repl i , respectively, with the initial values of log sales and
dummies for importing and exporting firms. The specification in panel d) includes the initial values of sectoral
exports, imports, export unit value, import unit value, capital goods imports and technology goods imports, as well
as the interactions of these variables with Repl i . The specification in panel e) includes interactions of Repl i with a
full set of 2-digit sector dummies. All regressions also include the linear terms in Repl i and RobSuit j-i , initial values
of log sales and dummies for importing and exporting firms, and 3-digit sector fixed effects. Standard errors are
corrected for clustering within 5-digit industries; t-statistics are reported in square brackets. ***, **, *: denote
significance at the 1, 5 and 10% level, respectively.

a) Interaction of Robot Suitability with Routine Intensity

c) Interactions of Replaceability with Firm Characteristics

e) Interactions of Replaceability with Sector Dummies

b) Interactions of Robot Suitability with Firm Characteristics

d) Interactions of Replaceability with Industry Characteristics
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tensity of each firm.21 While routine intensity is known to be correlated with the adoption

of new technologies such as computers (e.g., Autor, Levy and Murnane, 2003), Cheng et

al. (2019) find that robots are more prevalent at firms where employees are commonly do-

ing manual tasks rather than routine tasks. Accordingly, we expect the new interaction to

have no significant effect on outcomes, and its inclusion to leave the evidence on RobExpi
unaffected. The results do indeed show that the coeffi cients on the new interaction are not

precisely estimated for any outcome, and that the main findings remain unchanged after

controlling for this variable.

The previous exercise suggests that our main results are not capturing the possible corre-

lation of Repli with other firm characteristics associated to the introduction of technologies

other than robots. In a similar spirit, in panel b), we extend the specification by adding

interactions between RobSuitj−i and all the control variables included in Xi. While larger

and more trade-oriented firms could have different levels of replaceability, the main results

are preserved, suggesting that the coeffi cients on RobExpi is not driven by the potential

interplay of RobSuitj−i with firm size and trade orientation. Similarly, panel c) shows that

the results are unchanged when controlling for the interaction between each variable in Xi

and Repli.

Next, we consider the possibility that Repli interacts with industry characteristics other

than RobSuitj−i, and that such an interplay confounds the effects of RobExpi. In a first

exercise, presented in panel d), we add interactions between Repli and various industry

characteristics, namely: (i) total imports and exports, to account for differences in import

competition and export opportunities across industries; (ii) the average unit value of im-

ports, to accommodate cross-industry differences in the cost of sourcing inputs from abroad;

(iii) the average unit value of exports, to account for cross-industry differences in product

characteristics such as quality; (iv) capital goods imports and (v) technology goods imports,

to control for other forms of foreign technologies. Similar to RobSuitj−i, we construct each

of these variables in the initial year by aggregating across firms other than i in each 5-digit

industry.22 Controlling for these interactions leaves the coeffi cients on RobExpi close to

the baseline estimates, suggesting that our evidence is not confounded by other industry

characteristics possibly interacting with replaceability.

21This variable is defined as the share of routine-intensive occupations in the firm’s total employment in
1994. Data on routine intensity by occupation are sourced from Autor and Dorn (2013) and matched to the
29 French occupations in our data. The linear term in routine intensity is included in the specification but
untabulated.
22Each of these characteristics also enter the specification linearly (coeffi cients unreported).
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To further strengthen this view, in a final exercise, we add interactions between Repli
and a full set of 2-digit sector dummies. Contributing to the identification of the coeffi cients

β1 is now only the remaining variation in RobSuitj−i across narrow (5-digit) industries

within the same 2-digit sector. As shown in panel e), our main results are qualitatively and

quantitatively unchanged also in this case. Overall, the results presented this section largely

allay the concern that our findings could be driven by omitted firm or industry characteristics

interacting with the two components of robot exposure, and thereby give more credibility to

the key identifying assumption underlying our empirical strategy.

5.4 Mechanism and Economic Magnitude

So far, the analysis has unveiled a robust effect of robot exposure on firm-level outcomes but

has remained silent on the mechanisms through which this effect could take place. According

to the model, the key channel through which robot exposure works is by inducing firms to

adopt robots. In this section, we show that this mechanism is at work in our data.

To this purpose, we estimate eq. (22) using Adopteri, the dummy for firms that adopt

robots over the sample period, as the dependent variable. The baseline results are presented

in column (1) of Table 8. The coeffi cients on Repli and RobSuitj−i are both positive and

precisely estimated, implying that robot adoption is relatively higher at firms performing

more automatable tasks in the pre-sample period as well as in industries in which production

is more suitable for automation. Robot adoption is also positively affected by initial firm

sales, showing that initially larger firms adopt more robots in subsequent years, as predicted

by the model. Finally, and crucially, the coeffi cient on RobExpi is positive and very precisely

estimated, implying that firms that are more exposed to robots due to the interplay between

replaceability and automation suitability do indeed show a greater tendency to adopt robots

in subsequent years.

In the remainder of the table, we submit these results to a series of robustness checks.

In column (1), we report estimates from a weighted regression using the initial number of

employees in each firm as weights; in column (2), we exclude firms in the motor vehicle

industry; and, in column (3), we use the alternative proxy for robot exposure based on the

stock of installed robots in the US from the IFR.23 In all cases, the coeffi cient on RobExpi
is positive, very precisely estimated, and essentially unchanged compared to the baseline

23In column (3), the linear term in RobSuitj−i is absorbed by the sector fixed effects, as the stock of
installed robots from the IFR is only available at a higher level of industry aggregation (13 aggregate
sectors).
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Table 8: Robot Exposure and Robot Adoption, Long Differences

(1) (2) (3) (4)
RobExpi 0.002*** 0.003*** 0.002***

[3.128] [3.132] [3.110]
RobExpi (IFR) 0.007***

[3.704]
Repli 0.037*** 0.051*** 0.037*** 0.001

[2.960] [3.007] [2.967] [0.225]
RobSuitj-i 0.327** 0.483*** 0.331**

[2.253] [2.831] [2.257]
Ln Initial Salesi 0.013*** 0.017*** 0.013*** 0.013***

[7.347] [7.424] [7.308] [7.315]
Dummy Initial Importeri -0.001 -0.003* -0.001 -0.001

[-0.427] [-1.685] [-0.474] [-0.474]
Dummy Initial Exporteri 0.001 -0.001 0.001 0.001

[0.444] [-0.376] [0.544] [0.613]
Obs. 36,584 36,584 36,040 36,584
R2 0.04 0.06 0.04 0.04

Sector FE Yes Yes Yes Yes

Specification Baseline Weighted No Motor 
Vehicles

Robot Exposure 
(IFR)

The subscripts i and j denote firms and 5-digit industries, respectively. The dependent variable is
Adopter i , a dummy equal to 1 for firms that start importing robots over the sample period and
equal to 0 for non-importers. RobExp i is the product between the initial firm-level employment
share of occupations that can be replaced by robots (Repl i ) and initial ratio between the overall
stock of robots and the total capital stock of all other firms in each 5-digit industry j (RobSuit j-i ). 
RobExp i (IFR) is constructed analogously, replacing RobSuit j-i with the log stock of installed robots
in each firm's sector from the International Federation of Robotics. Sector fixed effects are
dummies for 3-digit sectors. Standard errors are corrected for clustering within 5-digit industries; t-
statistics are reported in square brackets. ***, **, *: denote significance at the 1, 5 and 10% level,
respectively.
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estimate.

The above results lend support to the predictions of the model, by showing that robot

exposure is a significant and robust predictor of robot adoption by firms. This does not rule

out the possibility that robot exposure affects outcomes through other channels. However, if

one is willing to assume that this is the only mechanism at work (exclusion restriction), then

our results can be interpreted in a standard Two-Stage Least Squares (2SLS) framework,

in which Adopteri is the endogenous regressor in eq. (22) and RobExpi is the excluded

instrument. Recast in this way, the estimates in Table 5 would correspond to the reduced-

form coeffi cients and those in Table 8 to the first-stage coeffi cients. The Kleibergen-Paap

F -statistic for excluded instruments would be around 10, the conventional rule-of-thumb

threshold for instrument relevance. Then, the ratio between the coeffi cients on RobExpi in

Table 8 and the corresponding coeffi cient in Table 5 would give the 2SLS estimate of the

effect of robot adoption on firm-level outcomes.

With the usual caveat about the exclusion restriction and taking into account the moder-

ate strength of the instrument, we now use this framework to have a sense of the magnitude

of the effect of “exogenous”adoption relative to that driven by demand shocks. Considering

the specification for the log change in employment, the 2SLS coeffi cient on Adopteri would

be equal to −49.481, with a t-statistic of −2.025. By comparing this coeffi cient with its OLS

counterpart in Table 4 (2.366), we can measure how much of the correlation between robot

adoption and employment changes is due to exogenous automation and how much reflects

instead demand shocks. Following Autor, Dorn and Hanson (2013), the OLS coeffi cient on

Adopteri, βOLS, can be decomposed as follows:

βOLS = βIV ×
σ2
IV

σ2
+ βRES ×

σ2
RES

σ2
,

where βIV is the second-stage coeffi cient on Adopteri, (σ2
IV /σ

2) is the fraction of the overall

variance of Adopteri explained by the fitted values of the first-stage regression (exogenous

adoption), and (σ2
RES/σ

2) is the residual fraction explained by demand shocks (endogenous

adoption).

We estimate (σ2
IV /σ

2) to be equal to 4.3 percent in our data, implying that robot adoption

is largely driven by demand shocks. Using these numbers along with the estimates of βOLS
and βIV yields βRES = 4.696. Accordingly, exogenous adoption explains an average annual

fall in employment equal to 2.13 percent in robot adopters relative to non robot adopters

(i.e., βIV × (σ2
IV /σ

2)). Residual adoption due to demand shocks is instead associated with
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an average annual increase in employment equal to 4.49 percent in the former group of firms

relative to the latter (i.e., βRES × (σ2
RES/σ

2)).

5.5 Additional Results

An interesting pattern that emerged from the preliminary analysis and was confirmed by the

results presented in the last section is that, in spite of a positive and robust effect on firm

effi ciency, robot exposure has a modest and generally imprecisely estimated effect on total

sales. A possible explanation for this result is that the productivity gains from automation

do not entirely translate into lower prices (hence higher sales) because automation induces

an increase in the firm’s market power. In Appendix B, we formalize this explanation using

an extension of the model in which markups are endogenous and respond to automation. In

this section, we provide suggestive empirical evidence, focusing on a smaller sample of firms

for which we have information on additional outcomes.

We start by studying how firm profits respond to automation. If the latter increased

market power, it should also lead to an increase in profits. In column (1) of Table 9,

we estimate eq. (22) using the log change in profits as the dependent variable and the

dummy for adopters, Adopteri, in place of RobExpi. The coeffi ent on Adopteri is positive

and statistically significant, implying that firms that adopt robots over the sample period

experience a faster increase in profits compared to other firms. In columns (2) and (3), we

replace Adopteri with RobExpi. The coeffi cient on this variable is also positive and precisely

estimated, consistent with a positive effect of robot exposure on profits.

These results are consistent with the view that automation increases market power. The

rise in market power should compensate the reduction in marginal costs, resulting into a

moderate response of prices to automation. In the remaining columns of Table 9, we thus

study the relation between automation and prices. Since our data, like the typical firm-level

dataset, does not contain information on prices for domestic sales, we exploit data on export

unit values and compute an average export price for each firm.24 We then estimate the same

specifications as in columns (1)-(3), using the log change in export prices as the dependent

variable; the sample is now restricted to exporting firms. The coeffi cients on Adopteri and

RobExpi are generally imprecisely estimated, suggesting that automation has little impact

on firm prices. While admittedly suggestive, the evidence in this section is consistent with

24This variable is constructed as the export-value-weighted average of the unit values of all 8-digit CN
products exported by the firm.
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Table 9: Robots, Profits and Export Prices, Long Differences
(1) (2) (3) (4) (5) (6)

Adopteri 2.844*** 1.051*
[3.207] [1.914]

RobExpi 0.199** 0.098

[1.993] [1.579]
RobExpi (IFR) 1.850*** -0.112

[3.488] [-0.176]
Repli -1.672* 2.032 -1.762** -0.114 1.678 -0.164

[-1.887] [0.910] [-2.008] [-0.183] [1.233] [-0.263]
RobSuitj-i -167.876 -175.135 125.806*** 124.635***

[-1.265] [-1.349] [4.703] [4.784]
Ln Initial Salesi -1.339*** -1.263*** -1.197*** -0.077 -0.048 -0.070

[-8.217] [-8.071] [-7.769] [-0.936] [-0.587] [-0.867]
Dummy Initial Importeri 1.845*** 1.842*** 1.799*** -0.129 -0.129 -0.129

[4.240] [4.218] [4.160] [-0.386] [-0.388] [-0.386]
Dummy Initial Exporteri 0.601 0.566 0.554

[1.245] [1.178] [1.147]
Obs. 18,572 18,572 18,572 16,018 16,018 16,018
R2 0.030 0.03 0.03 0.01 0.01 0.01

Sector FE Yes Yes Yes Yes Yes Yes
The subscripts i and j denote firms and 5-digit industries, respectively. In each regression, the dependent variable is 100 x the annualized
change in the firm-level outcome indicated in the corresponding column. Adopter i is a dummy equal to 1 for firms that start importing
robots over the sample period and equal to 0 for non-importers. RobExp i is the product between the initial firm-level employment share
of occupations that can be replaced by robots (Repl i ) and the initial ratio between the overall stock of robots and the total capital stock of
all other firms in each 5-digit industry j (RobSuit j-i ). RobExp i (IFR) is constructed analogously, replacing RobSuit j-i with the log stock of
installed robots in each firm's sector from the International Federation of Robotics. Sector fixed effects are dummies for 3-digit sectors.
Standard errors are corrected for clustering within 5-digit industries; t-statistics are reported in square brackets. ***, **, *: denote
significance at the 1, 5 and 10% level, respectively.

D Ln Profits D Ln Export Price Index
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a view in which the productivity gains from automation are at least partly offset by an

increase in market power, and thereby result into a moderate change in prices and sales and

a concomitant increase in profits.

6 Conclusions

In this paper, we have documented how the adoption of industrial robots affects a number of

firm-level outcomes using data from the universe of French firms observed between 1994 and

2013. To better inform our empirical strategy, we have built a model in which heterogeneous

firms invest in automation. Robots save on production workers, but they also require non-

production workers such as engineers and managers. A decline in the cost of capital induces

firms to invest more in automation, with ambiguous effects on employment. On the one

hand, machines displace workers; on the other hand, the increase in productivity raises the

demand for all factors. Importantly, these effects vary across firms: since automation saves

on the variable cost, firms facing a higher demand invest more in automation and are more

likely to shed workers.

The model illustrates one challenge in testing the effect of automation on employment:

demand shocks tend to generate a positive correlation between automation and employment

even when exogenous changes in automation would lead to job losses. A second key challenge

that researchers have faced so far is the measurement of automation at the firm level. The

main contribution of this paper is to propose a solution to these diffi culties. We have shown

how data on firm imports of industrial robots can be used to build proxies for automation

that are independent of demand shocks. Our rich data set allows us to document a number

of empirical patterns.

First, we have shown that robot adopters differ significantly from other firms: they are

larger, more productive and employ a higher share of high-skill workers. Over time, robot

adoption occurs after periods of expansion in firm size, and is followed by improvements in

firm effi ciency and an increase in demand for low-skill workers. Guided by our theoretical

model, we have then developed various empirical strategies to identify the causal effects of

robot adoption. Our results suggest that, while demand shocks generate a positive correlation

between robot adoption and employment, exogenous changes in automation lead to job losses,

especially for low-skill workers.

We have also found that, while robot adoption increases significantly sales per worker,

its effect on total sales is much less strong, suggesting that the effi ciency gains do not always
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translate into an equivalent fall in prices. These results raise concerns on some possible

negative effects of automation: besides the costly displacement of workers emphasized in the

literature, our findings suggest that the productivity gains from automation may be partly

offset by an increase in markups and that the widespread diffusion of automation, especially

among already large firms, may have contributed to the rise of market power.25

While this paper is a first attempt at identifying the firm-level effect of the adoption of

industrial robots, much remains to be done. First, in this paper we have focused attention

to firms that import robots. However, it would also be interesting to study what happens to

other firms in the same industry. In particular, robot adoption is likely to induce a reallo-

cation of market shares away from non adopters. Given that these firms differ markedly in

many dimensions, such a reallocation is likely to have significant effects on the demand for

labor and welfare. Estimating and quantifying these industry-level adjustments seems an im-

portant step to fully understand the aggregate impact of automation.26 Second, investigating

more the effects of automation on market power seems also important. While we have found

evidence consistent with the hypothesis that automation may grant market power, more di-

rect evidence is needed. Third, this paper focuses on the micro-level adjustment, but we see

it as a building block for a comprehensive study of the macroeconomic effects of automation

(e.g., Jaimovich et al. 2021). In particular, more evidence on labor-market effects is likely

to be useful for designing policies that could guarantee the benefits from new technologies

to be fully realized and broadly shared. Given the speed of technological progress and its

potentially disruptive effects, this is likely to become one of the most pressing challenges for

advanced economies in the near future.

25On the recent rise of market power, see for instance De Loecker and Eeckhout (2017) and Autor et al.
(2017).
26See Acemoglu, Lelarge and Restrepo (2020) and Koch, Manuylov and Smolka (2019), for some evidence

on this reallocation.
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A Choice of Automation: Comparative Statics

Denote the marginal benefit and the marginal cost of automation as MBi and MCi, respec-
tively. Then:

∂MBi

∂κi
= MBi × (σ − 1) ln

(w
r

)
∂MCi
∂κi

=
MCi

ρi (1− κi)
.

Profits are globally concave in κi when:

∂MBi

∂κi
<
∂MCi
∂κi

.

Under the assumption (σ − 1) ln
(
w
r

)
< 1/ρi, this condition is alwasy satisfied at κ

∗
i .

We derive here the comparative statics for the optimal level of automation, κ∗i , with
respect to the primitives of the model and prove that:

dκ∗i
dAi

> 0;
dκ∗i
dϕi

> 0;
dκ∗i

d(w/r)
> 0;

dκ∗i
dρi

> 0 ;
dκ∗i
dh

< 0.

Differentiating the first-order condition (12), we obtain the implicit derivative of κ∗i with
respect to any parameter v as

dκ∗i
dv

=
∂MC
∂v
− ∂MB

∂v
∂MB
∂κi
− ∂MC

∂κi

.

As noted above, condition (14) implies that the denominator is always negative. Hence, to
find the sign of the derivatives of interest, we just need to compute the numerator of the
expression above for Ai, ϕi, (w/r), ρi and h as follows:

∂MC

∂Ai
− ∂MB

∂Ai
= −MB

Ai
< 0→ dκ∗i

dAi
> 0

∂MC

∂ϕi
− ∂MB

∂ϕi
= − (σ − 1)

MB

ϕi
< 0→ dκ∗i

dϕi
> 0

∂MC

∂ (w/r)
− ∂MB

∂ (w/r)
= − MB

(w/r)

[
κi (σ − 1) +

1

ln (w/r)

]
< 0→ dκ∗i

d(w/r)
> 0

∂MC

∂ρi
− ∂MB

∂ρi
=

h

ρ2
i

ln (1− κi)
(1− κi)1/ρi

< 0→ dκ∗i
dρi

> 0

∂MC

∂h
− ∂MB

∂h
=

MC

h
> 0→ dκ∗i

dρi
< 0.
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B Automation and Market Power

We now extend the model to incorporate the notion that automation may increase market
power (e.g., Korinek and Ng, 2018). To keep the analysis as simple as possible, we consider a
case in which firms set their price so as to keep potential competitors out of the market (limit
pricing). Potential competitors can copy existing varieties, but they are less productive than
the original producer. To make the equilibrium markup a function of κi, we assume that the
production process of firms that use automation more intensively is harder to imitate. As a
result, the wedge between the limit price and the marginal cost increase in κi. To capture
the implications of this setup, we denote with µ (κi) ∈ (0, 1/σ) the profit share of revenue
and assume µ′ (κi) > 0.27

Then, the labor demand in equation (7) becomes:

li = w−σ (1− µ (κi))
σ Aiϕ

σ−1
i

(w
r

)κi(σ−1)

(1− κi) .

This expression shows that automation affects labor demand not only via the productivity
and the displacement effects, but also through the increase in the markup, as it is made clear
by the derivative:

dli/li
dκi

= − σµ′ (κi)

1− µ (κi)
+ (σ − 1) ln

w

r
− 1

1− κi
.

The endogenous reaction of markups dampens the productivity effect because the cost saving
generated by automation is only partially transferred to prices.
The impact of κi on markups also affects the incentives to automate. In particular, κi is

chosen to solve:
max
κi
{µ (κi) piyi − hfi (κi)} .

The first-order condition for automation becomes:

(σ − 1) piyi

[
µ (κi) ln

(w
r

)
+

(
1

σ − 1
− µ (κi)

1− µ (κi)

)
µ′ (κi)

]
= h (1− κi)−1/ρi . (B1)

This equation shows that, as long as the markup is below the one that would be chosen with-
out limit pricing (µ (κi) < 1/σ), and µ′ (κi) > 0, then firms have an incentive to automate to
increase their market power. This case introduces the possibility of "excessive" automation.
For instance, if

µ′ (κi)

1− µ (κi)
= ln

(w
r

)
,

automation would be chosen only to increase profits, with no effect on prices and sales, and
hence no gains to consumers.

27The main results would be qualitatively similar if we considered other models of imperfect competition
in which the perceived demand elasiticy is a function of market shares.
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C Discrete Choice of Automation

We now consider the case in which firm i can choose whether to keep the current level of
automation κ0 at no additional cost or increase it to κ1 > κ0, subject to the cost hκ1

ρi
. The

discrete choice problem facing firm i is

max
κi∈{κ0,κ1}

{
pi (κi) yi (κi)

σ
− hfi (κi)

}
.

The condition for i to choose κ1 is

pi (κ1) yi (κ1)− pi (κ0) yi (κ0)

σ
>
hκ1

ρi
,

which, after using (1) and (9), becomes

Ai
σ

[
ϕσw−σ

(
1− 1

σ

)σ]1−1/σ [(w
r

)κ1σ
−
(w
r

)κ0σ]1−1/σ

>
hκ1

ρi
.

The left-hand side captures the benefit of further automation, while the right-hand side
corresponds to its cost.
In this case, we can express the comparative statics in terms of the probability that an

increase in any parameter induces a switch from κ0 to κ1. In particular, we are interested in
the effect of an increase in (w/r) and its interaction with Ai, ϕi and ρi. It is easy to show
that the left-hand side, denoted by Bi, is increasing in (w/r):

∂Bi

∂
(
w
r

) =
(σ − 1)Ai

σ

[
ϕσi w

−σ
(

1− 1

σ

)σ]1−1/σ

[
κ1

(
w
r

)κ1σ−1 − κ0

(
w
r

)κ0σ−1
]

[(
w
r

)κ1σ − (w
r

)κ0σ]1/σ > 0.

This means that increasing automation is more likely to be optimal for lower relative cost of
capital (r/w).
To characterize the interaction with Ai and ϕi, we compute the cross derivatives of Bi,

∂2Bi

∂
(
w
r

)
∂Ai

=
∂Bi

∂
(
w
r

)A−1
i > 0,

∂2Bi

∂
(
w
r

)
∂ϕi

=
∂Bi

∂
(
w
r

)σϕ−1
i > 0,

which imply that the likelihood of further automation increases more with (w/r) for larger
and more productive firms.

49



The derivative of the automation cost with respect to ρi,

∂

∂ρi

(
hκ1

ρi

)
= −hκ1

ρ2
i

< 0,

suggests that an increase in (w/r) increases more the likelihood of further automation for
firms with higher replaceability ρi, since these face a lower cost.
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D Additional Results

Table D1 reports the estimation coeffi cients corresponding to the plots in Figure 4.

Table D1: Difference-in-Differences Event Studies
(1) (2) (3) (4) (5) (6)

Ln Sales Ln No. of 
Employees

Ln Sales per 
Worker

Ln VA per 
Worker

Ln TFP Empl. Sh. 
High Skill

Adoptionit-4 0.062** 0.013 0.006 0.048* 0.059** 0.002

[2.299] [0.722] [0.289] [1.679] [2.321] [0.759]
Adoptionit-3 0.086*** 0.062*** -0.024 0.022 0.053** 0.001

[2.889] [3.477] [-1.277] [0.792] [2.085] [0.217]
Adoptionit-2 0.105*** 0.065*** -0.013 0.011 0.040 0.003

[3.343] [3.187] [-0.630] [0.372] [1.458] [1.319]
Adoptionit-1 0.149*** 0.086*** -0.006 0.014 0.049* 0.005**

[4.566] [3.730] [-0.255] [0.466] [1.862] [2.108]
Adoptionit 0.199*** 0.114*** 0.013 0.015 0.048* 0.005*

[5.960] [4.821] [0.599] [0.526] [1.847] [1.660]
Adoptionit+1 0.210*** 0.124*** 0.008 0.000 0.042 0.009***

[5.984] [4.890] [0.367] [0.002] [1.567] [2.673]
Adoptionit+2 0.195*** 0.085*** 0.014 0.036 0.070** 0.012***

[5.241] [2.817] [0.507] [1.104] [2.402] [3.380]
Adoptionit+3 0.194*** 0.041 0.061** 0.082** 0.094*** 0.017***

[5.093] [1.261] [2.227] [2.293] [3.075] [3.991]
Adoptionit+4 0.177*** 0.026 0.063** 0.072* 0.078** 0.018***

[4.380] [0.690] [2.007] [1.934] [2.488] [3.734]
Adoptionit+5 0.200*** 0.040 0.052* 0.073** 0.089*** 0.013***

[4.827] [1.158] [1.914] [2.088] [2.803] [2.848]
Obs. 689,855 593,320 591,939 581,726 570,812 593,320
R2 0.93 0.88 0.89 0.81 0.86 0.67

Firm FE Yes Yes Yes Yes Yes Yes
Sector × Year FE Yes Yes Yes Yes Yes Yes
The subscripts i and t denote firms and years, respectively. The dependent variables are annual observations at time t of
the firm-level outcomes indicated in columns' headings. Adoption it is a dummy that takes on value 1 in the first year in
which a firm imports robots and in all subsequent periods, and is equal to 0 otherwise. Sector refers to 3-digit sectors.
Standard errors are robust to heteroskedasticity; t-statistics are reported in square brackets. ***, **, *: denote significance
at the 1, 5 and 10% level, respectively.
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Table D2 replicates the estimates in Table 2 using lnRobIntit, with the stock of robot
capital now constructed assuming a depreciation rate of 15 percent.

Table D2: Firm-Level Outcomes and Ln Robot Intensity with Depreciation, Panel (OLS)

(1) (2) (3) (4) (5) (6)

Ln RobIntit -0.074*** -0.090*** -0.097*** -0.097*** 0.011 0.009
[-3.111] [-3.979] [-5.096] [-5.076] [0.981] [0.793]

Obs. 6,368 6,324 6,373 6,329 6,368 6,324
R2 0.96 0.97 0.93 0.93 0.90 0.90

Ln RobIntit 0.022** 0.026** 0.013 0.013 0.010*** 0.010***
[2.097] [2.409] [1.180] [1.168] [3.051] [2.761]

Obs. 6,200 6,155 6,195 6,150 6,373 6,329
R2 0.81 0.82 0.87 0.87 0.88 0.88

Firm FE Yes Yes Yes Yes Yes Yes
Sector × Year FE Yes Yes Yes Yes Yes Yes
Controls No Yes No Yes No Yes
The subscripts i and t denote firms and years, respectively. The dependent variables are annual
observations of the firm-level outcomes indicated in columns' headings. Ln RobInt it is the log ratio
between the stock of robot capital and the total capital stock of the firm; the stock of robot capital is
constructed using a depreciation rate of 15%. Sector refers to 3-digit sectors. The control variables
included in columns (2), (4) and (6) are log sales and dummies for whether the firm is an importer or an
exporter, observed in the first year in which the firm appears in the sample and interacted with a full set of 
year dummies. Standard errors are corrected for clustering within firms; t-statistics are reported in square
brackets. ***, **, *: denote significance at the 1, 5 and 10% level, respectively.

Ln Sales Ln No. of Employees Ln Sales per Worker

Ln VA per Worker Ln TFP Empl. Sh. High Skill
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Table D3 shows descriptive statistics for the main variables included in the long-differences
specifications presented in Section 5.

Table D3: Descriptive Statistics - Long Differences Sample

Obs. Mean Median Std. Dev.
Δ Ln No. of Employees 497 -0.009 0.003 0.077
Δ Empl. Sh. High Skill 497 0.005 0.003 0.009
Δ Ln Sales 493 -0.093 -0.081 0.093
Δ Ln Sales per Worker 493 -0.083 -0.081 0.090
Δ Ln VA per Worker 470 -0.096 -0.094 0.095
Δ Ln TFP 460 -0.092 -0.086 0.083
Δ Ln Profits 300 -0.053 -0.061 0.189
Δ Ln Export Price Index 424 0.017 0.018 0.148
Ln Initial Sales 497 11.778 11.644 1.768
Dummy Initial Importer 497 0.924 1.000 0.266
Dummy Initial Exporter 497 0.889 1.000 0.314
Replaceability 497 0.378 0.416 0.183
Robot Exposure 497 -5.872 -5.330 3.730

Δ Ln No. of Employees 36,087 -0.033 -0.012 0.095
Δ Empl. Sh. High Skill 36,087 0.003 0.001 0.011
Δ Ln Sales 35,808 -0.132 -0.108 0.131
Δ Ln Sales per Worker 35,808 -0.097 -0.093 0.131
Δ Ln VA per Worker 34,710 -0.104 -0.101 0.141
Δ Ln TFP 33,163 -0.107 -0.098 0.123
Δ Ln Profits 18,272 -0.084 -0.077 0.377
Δ Ln Export Price Index 15,594 0.005 0.011 0.285
Ln Initial Sales 36,087 9.882 9.686 1.376
Dummy Initial Importer 36,087 0.550 1.000 0.498
Dummy Initial Exporter 36,087 0.519 1.000 0.500
Replaceability 36,087 0.358 0.360 0.190
Robot Exposure 36,087 -6.681 -5.946 4.300

Robot Adopters

Non Robot Adopters

The sample for the specifications in long differences consists of 36,584
manufacturing firms with more than 10 employees excluding firms in the
"Installation and Repair of Machinery and Equipment" industry. Statistics are
reported for the annualized changes in the outcomes and for the initial values
of the Importer and Exporter dummies, Ln Sales , Replaceability and Robot 
Exposure , the product between the initial firm-level employment share of
occupations that can be replaced by robots (Replaceability ) and the initial ratio
between the overall stock of robots and the total capital stock of all other
firms in each 5-digit industry (Robot Suitability ). 
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