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1 Introduction

Gravity equations have been the predominant tool for analyzing the determinants of bilateral

trade flows since their introduction by Tinbergen (1962) over 60 years ago. In their most

basic form, gravity equations predict that trade between countries is a log-linear function

of the economic mass of the two trading partners and bilateral frictions such as distance

or tariffs. Even in this simple form, gravity equations have substantial explanatory power,

often explaining in excess of 70-80% of the variation in the trade flows between countries.

Starting with Anderson (1979), researchers have shown that gravity equations can be derived

from a number of mainstream theoretical frameworks, allowing a tight link to economic

welfare analysis. Not surprisingly then, gravity equations have become the workhorse tool

for evaluating trade-related economic policies, such as tariffs, trade agreements or WTO

membership.

Despite the rapid progress that research on gravity equations has made over the past

decades, existing approaches remain at odds with a key stylized fact about international

trade, however: Much of world trade is dominated by a small number of large firms. The

classic example is the market for wide-bodied passenger aircraft which comprises just two

firms (Airbus and Boeing); but the markets of many other tradable goods such as cars, mobile

phones or television sets are also dominated by a handful of large producers. That is, in the

language of Gaubert and Itskhoki (2021), trade flows are “granular”. Given their size, it

seems likely that such “granular” firms enjoy substantial market power and have incentives

to internalize the effects of their actions on aggregate market outcomes. In this paper, we

evaluate the consequences of oligopolistic behavior for the estimation of gravity equations.

Under oligopoly, standard approaches to gravity estimation deliver inconsistent estimates

of key parameters, such as the trade elasticity with respect to distance. The reason is that

markups co-vary systematically with bilateral variable trade costs (e.g., distance or tariffs)

and are contained in the error term of the gravity equation. The key intuition is that firms

selling in destinations with higher bilateral trade costs face higher marginal costs, and that

these higher marginal costs are incompletely passed through under oligopoly.1 This induces

a classical omitted variable bias, which leads to an under-estimation of the trade elasticity:

The value of exports does not fall as much with variable trade costs as it would fall if markups

were held constant, because firms systematically reduce markups when selling to destinations

1For evidence on incomplete cost pass-through in the industrial organization and international trade
literatures, see Feenstra (1989), Nakamura and Zerom (2010), Burstein and Gopinath (2014), Ganapati,
Shapiro, and Walker (2020), and Genakos and Pagliero (2022).
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with higher trade costs.

We derive firm- and industry-level gravity equations from a rich heterogeneous-firm model

with oligopolistic competition and product differentiation based on Atkeson and Burstein

(2008). Consumers have CES preferences with industry-specific demand elasticities, firms

face industry-specific returns to scale and draw idiosyncratic productivity and quality shocks.

We show how to consistently estimate gravity-equation parameters in this model using firm-

and industry-level trade flows.

Specifically, we show how to eliminate the oligopoly bias by constructing a correction

term that purges observed trade flows from oligopolistic market power effects. At the firm

level, the correction term uses information on firms’ market shares and demand elasticities

and returns to scale.2 At the industry level, the correction term takes the form of an origin-

destination-level Herfindahl index (HHI) of exporters multiplied by the exporting country’s

aggregate market share in the destination market. This is intuitive: Exporters’ markups

are high if exports are concentrated in a small number of firms that have a large aggregate

market share in the destination.

In our empirical applications, we use firm- and industry-level data on exports of French

and Chinese firms to European countries, and therefore focus on distance as the only bilateral

trade cost variable.3 We show that failing to account for oligopoly leads to a substantial

underestimation of the distance elasticity of trade flows.4 At the firm level, the average

oligopoly bias is around 50%. At the industry level, the bias is around 10% for the average

industry but it is substantially larger in a significant minority of industries, in which exports

tend to be highly concentrated.

To confirm the validity of our empirical approach, we perform a detailed Monte Carlo

study. We calibrate our rich heterogeneous-firm CES oligopoly model to match key statistics

of the French and Chinese micro-level trade data, and use it to generate a simulated data-set.

We then run firm- and industry-level gravity regressions on that data-set, and find that our

oligopoly corrections do very well in recovering the distance coefficient. By contrast, without

the oligopoly correction, we obtain a bias of similar magnitude to that in the regressions run

on the actual data.

2As a secondary contribution, we also show how to obtain model-consistent estimates of demand and
supply parameters by industry, building on Feenstra (1994) and Broda and Weinstein (2006).

3Because of the restriction to European destinations (for reasons outlined below), there is insufficient
variation to include other common gravity variables. However, our methodology naturally applies also to
policy-relevant variables such as tariffs and regional trade agreements.

4As a result, the estimated distance elasticity of trade costs is biased downwards. Using price data for
shipments and estimates of cost pass-through to account for variable markups, Atkin and Donaldson (2015)
also find such a downward oligopoly bias.
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Finally, we use our calibrated model to evaluate the welfare effects of a 10% trade cost

reduction. We find that the resulting welfare gains are almost twice as high under oligopoly

as under monopolistic competition. This is driven both by the larger estimated distance

coefficient under oligopoly compared to monopolistic competition, and by additional pro-

competitive gains from trade due to reduced markups.

Related literature. Our paper builds on the literature deriving theory-consistent grav-

ity equations. Anderson (1979), Eaton and Kortum (2002), Anderson and van Wincoop

(2003), Chaney (2008), Melitz and Ottaviano (2008), Arkolakis, Costinot, and Rodriguez-

Clare (2012), Arkolakis, Costinot, Donaldson, and Rodriguez-Clare (2019) and Allen, Arko-

lakis, and Takahashi (2020) show how to obtain aggregate/industry-level gravity equations

from a variety of theoretical frameworks. We contribute to this literature by deriving theory-

consistent gravity equations at the firm- and industry level under oligopoly.

Another strand of the literature, surveyed by Head and Mayer (2014), is concerned with

the estimation of gravity equations. We contribute to this literature by proposing methods

to estimate gravity equations when firms have market power. Anderson and van Wincoop

(2003) highlight the importance of controlling for ‘multilateral resistance’ (i.e., the price

index in the destination). Harrigan (1996) was the first to do so using destination fixed

effects, an approach that has been followed in most subsequent studies, including the present

paper. Santos Silva and Tenreyro (2006) advocate the use of the Poisson Pseudo Maximum

Likelihood (PPML) estimator to address a potential bias arising from heteroscedasticity

in log-linearized models—an approach that we also follow. An important problem for the

estimation of gravity estimations arises from firms self-selecting into export markets. At the

firm level, Bas, Mayer, and Thoenig (2017) propose to focus on top exporters that are present

in most destinations.5 At the industry/aggregate level, Helpman, Melitz, and Rubinstein

(2008) propose a two-step estimation procedure, which in addition to the standard Heckman

correction also controls for the extensive margin of exports. We adopt both approaches in

this paper.

Our paper is among the first to use gravity estimates to evaluate the welfare effects of trade

policies under oligopoly. Arkolakis, Costinot, and Rodriguez-Clare (2012) identify a class of

models with monopolistic or perfect competition in which the trade elasticity is constant and

constitutes (in conjunction with countries’ trade shares) a sufficient statistic for the welfare

gains from trade.6 Arkolakis, Costinot, Donaldson, and Rodriguez-Clare (2019) extend this

5By focusing on the largest exporters, however, this approach is likely to exacerbate the oligopoly bias,
thus making it even more important to control for market power.

6See, however, Melitz and Redding (2015) who emphasize the role of micro structure for the gains from
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approach to a class of monopolistic competition models with variable markups, assuming that

productivities are Pareto-distributed. They show empirically that gains from trade are lower

when markups are variable rather than constant. While our model does not admit a sufficient

statistic, we ask a related but different question: Are the gains from trade higher or lower

under oligopoly, which features variable markups, compared to monopolistic competition

with constant markups? We find significantly larger welfare gains under oligopoly. This is

in line with Edmond, Midrigan, and Xu (2015) who calibrate a two-country version of the

oligopoly model of Atkeson and Burstein (2008) to assess the gains from trade.7

In the last decade, there has been a revived interest in integrating oligopoly into models

of international trade, partially building on earlier contributions by the strategic trade policy

literature (see Brander, 1995). The by-now dominant framework, which we also adopt, was

proposed by Neary (2003) and further developed by Atkeson and Burstein (2008). It features

a continuum of oligopolistic industries, implying that firms have market power in their own

industry but not in the aggregate. Quantitative papers that build on this framework include

Edmond, Midrigan, and Xu (2015) and Gaubert and Itskhoki (2021).8

The rest of the paper is organized as follows. In Section 2, we present our theoretical

framework and derive oligopoly correction terms for firm- and industry-level gravity equa-

tions. In Section 3, we describe the data sources, discuss estimation challenges, and present

the empirical results from our firm-level gravity estimations. In Section 4, we repeat these

steps for our industry-level gravity estimations. In Section 5, we provide Monte Carlo sim-

ulations to evaluate the performance of our estimation procedures. In Section 6, we use a

calibrated version of our model to study the welfare gains from trade-cost reductions. Finally,

we conclude in Section 7.

2 Gravity Equations under Oligopoly

In this section, we first present the oligopoly model underlying our approach to gravity with

granular firms. Next, we derive gravity equations at both the firm and industry level.

trade in models that do not fit the assumptions of Arkolakis, Costinot, and Rodriguez-Clare (2012).
7Heid and Staehler (2020) propose an extension of Arkolakis, Costinot, and Rodriguez-Clare (2012)’s

formula to evaluate the gains from trade under oligopoly. To recover the necessary parameters, they derive a
firm-level gravity equation in oligopoly. However, they estimate it from aggregate trade data, assuming the
economy consists of a large number of identical industries, each of which hosts only one firm per country.
They also find that the welfare gains from trade liberalization are substantially larger under oligopoly.

8Other papers introducing oligopoly into international trade models include Eckel and Neary (2010),
Parenti (2018), Head and Mayer (2019), and Breinlich, Nocke, and Schutz (2020).
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2.1 Theoretical Framework

We consider a multi-country world with a continuum of industries, indexed by z.9 The

representative consumer in country n maximizes

Un =

∫
z∈Z

αn (z) log

 ∑
j∈Jn(z)

ajn(z)
1

σ(z) qjn(z)
σ(z)−1
σ(z)


σ(z)

σ(z)−1

dz,

where αn(z) denotes the industry-z expenditure share in country n, Jn (z) is the set of

products available in industry z and country n, and σ (z) denotes the elasticity of substitution

between products in industry z. Consumption of product j in country n is denoted qjn(z).

The utility shifter ajn(z) captures quality differences or other factors such as brand appeal.

The resulting direct and inverse demands for product i ∈ Jn (z) in country n are given by

qin(z) = ain(z)pin(z)
−σ(z)Pn(z)

σ(z)−1αn(z)En (1)

and

pin(z) = ain(z)
1

σ(z) qin(z)
− 1

σ(z)Qn(z)
−σ(z)−1

σ(z) αn(z)En,

where En is total expenditure in country n, and

Pn(z) ≡

 ∑
j∈Jn(z)

ajn(z)pjn(z)
1−σ(z)

 1
1−σ(z)

and Qn(z) ≡

 ∑
j∈Jn(z)

ajn(z)
1

σ(z) qjn(z)
σ(z)−1
σ(z)


σ(z)

σ(z)−1

are the industry-z CES price index and composite commodity in country n, respectively.

From now on, we focus on a single industry and drop the index z.

Each product i ∈ Jn is offered by a different firm, which may be either a domestic or

foreign producer. Firms compete in quantities in each market n, being able to segment

markets perfectly.10 The profit of the firm offering product i from selling in destination n is

πin = pinqin − Cin(qin), where Cin(qin) is the firm’s cost of producing and selling output qin.

9The framework we lay out here can be viewed as being general equilibrium. However, as we focus on a
given equilibrium and do not conduct comparative statics at the aggregate level, we refrain from explicitly
closing the model by writing down factor market-clearing conditions and endogenizing consumer income.
Closing the model would be straightforward—for example, by assigning a labor endowment to each country,
assuming that all costs are incurred in terms of origin-country labor, choosing labor in a reference country as
the numeraire, and assuming that profits and tariff revenues are distributed lump sum to domestic consumers.

10We focus on quantity competition here and present results for price competition in Appendix C.
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We allow for variable returns to scale and use the following functional form:

Cin(qin) =
1

1 + γ
cin(τ̃inqin)

1+γ =
1

1 + γ
cinτinq

1+γ
in ,

where cin is a firm-destination cost shifter and τ̃in a firm-destination trade cost of the iceberg

type.11 We assume throughout that the returns-to-scale parameter γ satisfies γ > −1/σ,

which means that the marginal cost of production should not decrease too fast with output.

This (weak) assumption guarantees that all the profit functions we consider are unimodal.

Under oligopoly, firms take into account the impact of their quantity choices on the CES-

composite, Qn. For what follows, it is useful to generalize further the degree of strategic

interaction between firms by introducing a conduct parameter, λ (see Bresnahan, 1989):

When firm i increases its output qin by an infinitesimal amount, it perceives the induced effect

on Qn to be equal to λ∂Qn/∂qin. Under monopolistic competition, the conduct parameter λ

takes the value of zero, whereas it is equal to one under Cournot competition. The first-order

condition of profit maximization of firm i in destination n is given by

0 =
∂πin

∂qin
=

αnEn

Q
σ−1
σ

n

a
1
σ
in

σ − 1

σ
q
− 1

σ
in − σ − 1

σ
λ
∂Qn

∂qin

αnEna
1
σ
inq

σ−1
σ

in

Q
σ−1
σ

+1
n

− C ′
in(qin)

=
σ − 1

σ
pin (1− λsin)− C ′

in(qin), (2)

where

sin ≡ a
1
σ
inq

σ−1
σ

in∑
j∈Jn

a
1
σ
jnq

σ−1
σ

jn

(3)

is the market share of firm i in destination n.

Rearranging terms in equation (2) yields firm i’s optimal markup in destination n:

µin =
1

σ
+ λ

σ − 1

σ
sin, (4)

where µin ≡ (pin − C ′
in(qin)) /pin is the Lerner index. Under monopolistic-competition con-

duct (λ = 0), the usual constant markup 1/σ obtains. If instead λ > 0, then markups are

no longer constant and depend positively on market shares. We will make use of the addi-

tional flexibility afforded by the conduct parameter λ in Section 2.3, but for now, we assume

Cournot conduct and set λ = 1.

11For one unit of the output to arrive in destination n, the firm needs to ship τ̃in. Note that we define
τin = τ̃1+γ

in to ease the subsequent notation.
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2.2 Firm-Level Gravity in Oligopoly

From the definition of the Lerner index, firm i’s price in market n is pin = cinτinq
γ
in/(1−µin).

Using equation (1), the value of its sales can be written as

rin = pinqin =

(
cinτin
1− µin

) 1−σ
1+σγ (

ainP
σ−1
n En

) 1+γ
1+σγ . (5)

We log-linearly decompose the quality- and cost-shock terms as log ain = εai + εan + εain

and log cin = εci + εcn + εcin, respectively. We further decompose trade costs as log τin =

βXin + ετi + ετn + ετin where Xin includes variables with bilateral variation such as (log)

distance, common language, or dummies for the presence of trade agreements or currency

unions. Obtaining consistent estimates of the coefficients on these bilateral terms (β) is a

key objective of much of the gravity literature.

Taking the logarithm of equation (5) yields the firm-level gravity equation

log rin = ξn + ζi + β
1− σ

1 + σγ
Xin +

σ − 1

1 + σγ
log (1− µin) + εin, (6)

where ξn and ζi summarize destination- and firm-specific terms, and

εin =
1

1 + σγ

[
(1 + γ) εain + (1− σ) (εcin + ετin)

]
.

Note that under the assumption of monopolistic competition, the markup term involving µin

would be constant and could be subsumed in ζi. In that case, estimation of (6) would yield

consistent estimates of the coefficient on Xin, provided that firm and destination fixed effects

(ζi and ξn) are controlled for and that the usual identifying assumptions made in the gravity

literature hold.12

Under oligopoly, however, the markup term will depend on firms’ market shares and will

thus be correlated with the regressors of interest, Xin, resulting in an omitted variable bias.

For example, to the extent that firms face larger variable trade costs in more-distant markets,

their market shares are lower there, ceteris paribus. Hence, firms charge lower markups in

12For least-squares estimation of the log-linearized gravity equation, the identifying assumption is
E (εin|Xin, ξn, ζi) = 0. This assumption does not rule out correlations between the bilateral variables and
taste, production and trade cost shocks working through the firm- and destination-level components (εai , ε

a
n,

εci , ε
c
n, ε

τ
i and ετn). Such correlations are not a problem, as these components can be controlled for through

firm and destination fixed effects. If the data contain a time dimension, one can also allow for time-invariant
bilateral elements in the error term which can be captured through bilateral fixed effects—as is standard,
e.g., in the literature on the trade effects of preferential trade agreements (e.g., Baier and Bergstrand, 2007).
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such destinations, implying a positive correlation between distance and the omitted variable,

log(1 − µin). Importantly, as markups vary at the firm-destination level, their variation

cannot be controlled for by firm and destination fixed effects.13

We propose to solve the omitted variable problem by constructing a proxy for the markup

term in (6). Specifically, with estimates for σ and γ and data for sin, we can compute

µ̂in =
1

σ̂
+

σ̂ − 1

σ̂
sin

and estimate

log r̃in = ξn + ζi + β
1− σ

1 + σγ
Xin + εin, (7)

where

log r̃in ≡ log rin −
σ̂ − 1

1 + σ̂γ̂
log (1− µ̂in) . (8)

The right-hand side of equation (7) is the same as in the standard firm-level gravity equation.

The novelty is that the trade flows on the left-hand side have been purged from oligopolistic

market power effects, as detailed in equation (8). Given our earlier identifying assumptions,

using log r̃in instead of log rin as the dependent variable yields a consistent estimate of β 1−σ
1+σγ

.

Using again the estimates for σ and γ then allows recovering the parameter of interest, β.14

2.3 Industry-Level Gravity in Oligopoly

We now turn to gravity at the industry level. We first analyze the equilibrium in a given

market using an aggregative games approach (Nocke and Schutz, 2018b; Anderson, Erkal,

and Piccinin, 2020). We then leverage Nocke and Schutz (2018a)’s approximation techniques

to derive an industry-level gravity equation that accounts for oligopolistic behavior.

An aggregative games approach to industry equilibrium. Consider industry z in

destination n. Dropping reference to z to ease notation, we define the market-level aggregator

Hn as

Hn ≡ Q
σ−1
σ

n =
∑
j∈Jn

a
1
σ
jnq

σ−1
σ

jn

13The inclusion of firm-destination fixed effects would make it impossible to identify separately the effect
of key regressors of interest such as distance, tariffs or dummy variables for trade agreements. Having a time
dimension in the data would not help either because markups would then vary by firm, destination, and time.

14Note the parallel to the literature on trade and quality which uses a similar approach to correct export
values or quantities (e.g., Khandelwal, Schott, and Wei, 2013).
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and firm i’s type Tin, a measure of quality-adjusted productivity, as

Tin ≡ a
1
σ
in

(
αE

cinτin

σ − 1

σ

) σ−1
σ(1+γ)

. (9)

Plugging these definitions into equation (2), using equation (3), and rearranging, we obtain:

1− λsin = s
1+σγ
σ−1

in

(
H

Tin

)σ(1+γ)
σ−1

, (10)

where λ is the conduct parameter introduced in Section 2.2. As the left-hand side is non-

increasing in sin and the right-hand side is strictly increasing in sin, the equation has a

unique solution in sin, denoted S(Tin/Hn, λ)—the market-share fitting-in function. It is

easily verified that S(·, ·) is strictly increasing in its first argument and strictly decreasing in

its second.

The equilibrium level of the aggregator, H∗(λ), is pinned down by market shares having

to add up to unity: ∑
i∈Jn

S

(
Tin

Hn

, λ

)
= 1. (11)

The uniqueness of the solution follows by the strict monotonicity of the market-share fitting-

in function.

To summarize:

Proposition 1. In each destination market n, and for any conduct parameter λ, there exists a

unique equilibrium in quantities. The equilibrium aggregator level H∗
n(λ) is the unique solution

to equation (11). Each firm i’s equilibrium market share is s∗in(λ) = S(Tin/H
∗
n(λ), λ), where

S(Tin/H
∗
n(λ), λ) is the unique solution to equation (10).

Proof. See Appendix A.1

The first-order approach to industry-level gravity. Let Jon ⊊ Jn denote the subset

of exporters from country o that sell in the destination market n. Their aggregate exports

to market n are given by s∗onαEn, where s∗on(λ) ≡
∑

i∈Jon
s∗in(λ). We are interested in these

aggregate exports when firms compete in a Cournot fashion, i.e., when λ = 1. Unfortunately,

there is no closed-form solution to s∗on(1). Our approach therefore entails approximating it.

As we show in the following, the approximation relies on two Herfindahl indices, namely

9



the HHI of all firms selling in the destination market n,

HHIn(λ) ≡
∑
j∈Jn

(
s∗jn(λ)

)2
,

and the HHI among the exporters in country o that sell in the destination market n,

HHIon(λ) ≡
∑
j∈Jon

(
s∗jn(λ)

s∗on(λ)

)2

.

We obtain:

Proposition 2. At the first order, in the neighborhood of λ = 0 (monopolistic-competition

conduct), the logged joint market share in destination n of the firms from origin o is given by

log s∗on(λ) = log s∗on(0) +
σ − 1

1 + σγ

[
HHIn(λ)− s∗on(λ)HHIon(λ)

]
λ+ o(λ).

Proof. See Appendix A.2.

The proposition shows that the joint market share of the exporters from country o differs

from the one that would obtain under monopolistic competition by a market-power term

that takes account of both the overall concentration in the destination market and the con-

centration among the country-o exporters.

This result motivates the following approximation:

log s∗on(0) ≃ log s∗on(1)−
σ − 1

1 + σγ

[
HHIn(1)− s∗on(1)HHIon(1)

]
.

Thus, the export flow that would obtain under monopolistic competition is approximately

given by

log(αnEn) + log s∗on(1)︸ ︷︷ ︸
log ron

− σ − 1

1 + σγ

[
HHIn(1)− s∗on(1)HHIon(1)

]
,

where ron is the (actually observed) export flow under oligopoly. As the HHIn term will be

subsumed in the destination fixed effect, we define

log r̃on ≡ log ron +
σ − 1

1 + σγ
son HHIon (12)

as the value of the export flow from o to n purged from market-power effects, which can be

computed with data on ron, son and HHIon, and estimates of σ and γ.
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Next, we derive a gravity equation for oligopoly-corrected trade flows log r̃on. To do so,

we impose the following structure on the shocks to quality, marginal costs and trade costs:

log ain = log ai + εao + εan + εaon,

log cin = log ci + εco + εcn + εcon,

log τin = βXon + ετo + ετn + ετon.

Combining this with equation (5) (with µin = 1/σ), adding up over all the exporters from o

to n, and taking the logarithm, yields a gravity equation of the following form:

log r̃on = ξo + ζn + β
1− σ

1 + σγ
Xon + ϕon + εon, (13)

where ξo is an origin fixed effect, ζn is a destination fixed effect,

ϕon ≡ log
∑
j∈Jon

a
1+γ
1+σγ

j c
1−σ
1+σγ

j ,

and

εon ≡ 1 + γ

1 + σγ
εaon +

1− σ

1 + σγ
(εcon + ετon).

If the set of exporters from origin o were the same in all destinations n (i.e., if Jon were

independent of n), then the term ϕon would be subsumed into the origin fixed effect. In

that case, regressing log r̃on on origin and destination fixed effects, and the bilateral variables

Xon would yield a consistent estimate of β(1 − σ)/(1 + σγ), provided the usual identifying

assumption E (εon|Xon, ξo, ζn) = 0 holds.

If instead, the set Eon does depend on n because of self-selection into export destinations,

then ϕon is no longer absorbed by the origin fixed effect, and is likely to be correlated with

Xon. In Section 4 below, we discuss how to address such self-selection issues and still obtain

a consistent estimate of the “intensive-margin effect”, β(1− σ)/(1 + σγ).15

15We choose to focus on the intensive-margin effect for the following reasons. First, this is also the effect of
interest at the firm level. Second, the overall effect of bilateral trade costs on trade flows, which would include
the extensive-margin effect through self-selection into exporting, is generally not constant in this model, due
to oligopoly and productivities not being Pareto-distributed.
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3 Empirical Implementation: Firm-Level Gravity

In this section, we show how to empirically implement our gravity-estimation approach at

the firm level. Our empirical specification is

log r̃inzt = ξnzt + ζizt + β
1− σz

1 + σzγz
Xin + εinzt, (14)

where

log r̃inzt ≡ log rinzt −
σ̂z − 1

1 + σ̂zγ̂z
log (1− µ̂inzt) , (15)

corresponding to equations (7) and (8) in Section 2.2 above, except that we have made

here the industry (z) and time (t) dimensions explicit. Due to data limitations explained

below, we focus on distance as our only gravity variable, so that Xin boils down to the scalar

log(diston), where diston is the distance between firm i’s origin o and destination n. In the

following, we discuss estimation challenges, present our data, run gravity regressions with and

without oligopoly correction, and investigate under what circumstances ignoring oligopolistic

behavior leads to quantitatively important biases.

Estimation Challenges. A first issue is how to control for destination fixed effects ξnzt

in a setting with firm-level export data. With export data from a single origin country, we

would not be able to separate the impact of bilateral variables from the destination fixed

effects.16 To address this issue, we follow Bas, Mayer, and Thoenig (2017) by combining two

data-sets on the exports of French and Chinese firms, respectively.

Secondly, we have to address self-selection issues, as most firms export only to a subset of

possible destinations. When estimating equation (14), observations with zero trade flows drop

out. In the presence of export fixed cost, there is selection into exporting in our model: Firms

selling in more distant foreign markets will be more likely to have received a favorable taste,

productivity, or trade-cost shock for that destination, allowing them to operate in this more

difficult environment. As a consequence, the conditional expectation E (εinzt|Xin, rinzt > 0)

is likely to be different from zero. To address this issue, we adapt an approach proposed

by Bas, Mayer, and Thoenig (2017) and restrict our estimation sample to the largest three

French and Chinese firms in each industry as measured by total industry-level exports, added

up over all destinations. As those firms are generally very productive, produce high-quality

products (low εcizt and/or high εaizt), or use low-cost market-access technologies (low ετizt),

16For example, if we used data on the exports of French firms only, we would not be able to distinguish
whether firms’ exports to a given destination are high because France and the country in question are close
to each other or because of other destination-specific factors such as a high price index or expenditure level.
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they are likely to serve most destinations, so that the destination-specific shocks (εcinzt, ε
a
inzt,

and ετinzt) do not play an important role in their market entry decisions. We acknowledge

that this is an imperfect solution but our simulation evidence presented in Section 5 shows

that focusing on top exporters does indeed substantially reduce selection bias. Moreover, we

show that our results are very similar when using only the top exporter or top-5 exporters

from France and China; see footnote 23 below.

Third, as shown by Santos Silva and Tenreyro (2006), in the presence of heteroscedastic-

ity the log-linearized gravity equation yields inconsistent estimates of E(r̃inzt|Xin, ξnzt, ζizt),

where

r̃inzt = exp(ξnzt + ζizt + β
1− σz

1 + σzγz
Xin) exp(εinzt). (16)

To see this, note that if Var(exp(εinzt)|Xin) depends on Xin, then so does E(εinzt|Xin). A

solution to this problem is to estimate the gravity equation (16) by PPML in multiplicative

form, which also allows us to include zero trade flows in our estimation sample. Recent

computational advances in PPML estimation (e.g., Correia, Guimaraes, and Zylkin, 2019)

make it possible to include the large number of fixed effects required in our setting.

Finally, the oligopoly correction term for firm-level gravity (see equation (15)) requires

estimates of σ and γ. For our main empirical specifications, we follow the literature and

assume constant returns to scale (γ = 0) and set σ equal to 5, a typical value from the

literature. However, we will also obtain estimates of σ and γ by adapting the estimation pro-

cedure of Feenstra (1994) and Broda and Weinstein (2006) to firm-level data and oligopolistic

competition; see Appendix B for details.17

Data. We use annual firm-level export data for French and Chinese exporters provided by

the two countries’ customs authorities for the years 2000–2010. In each data-set, we observe

all the products a firm exports and all the destinations it serves, and the quantity and value

of the underlying flows. Although both data-sets record export data at the 8-digit level, we

need to aggregate this information up to the 6-digit level of the Harmonised System (HS),

which is the most disaggregate level at which the two national classifications are comparable.

Using export values and quantities, we compute unit values—a commonly used proxy for

prices in the trade literature.

To compute market shares, defined as the ratio of export value to absorption, we combine

our firm-level data with absorption data at the HS 6-digit level (or close to it) from Eurostat’s

17If our data exhibited tariff variation by destination, we could instead adopt the approach of Head and
Mayer (2019) to estimate σ directly from the gravity equation.
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PRODCOM database.18 The downside of using PRODCOM is that absorption data is only

available for European countries. As a result, there is insufficient variation to include, in

addition to distance, regressors such as dummies for common language or policy-related

variables (e.g., membership in a free-trade agreement and bilateral tariffs).19

After combining our data sources, we end up with information on export values, export

quantities, and market shares for 31 European destinations, 1,864 industries and around

250,000 exporters for the period 2000–2010.20,21 We source information on bilateral distance

from CEPII.

Descriptive Statistics. The key determinants of our oligopoly correction term are firm-

level market shares, and estimates for demand elasticities (σ) and returns to scale (γ). Col-

umn (1) of Table 1 presents information on the firm-level market shares for the French and

Chinese exporters. The average market share across the approximately 14 million firm-

destination-industry-year combinations in our data is small (0.4%) and the median is even

smaller (around 0.01%). At the 95th percentile, the firm-level market share is 1.12%. Clearly,

the typical firm in our data does not enjoy much market power.

However, this does not imply that correcting firm-level exports for oligopoly forces will not

matter quantitatively, as estimation results could be substantially biased by a small number

of exporters with high market shares. Columns (2)–(4) focus on such firms. Column (2)

shows descriptive statistics for the top exporters (i.e., the French and Chinese firms with the

largest total export values for a given 6-digit industry and year). The average top-exporter

18Absorption, defined as domestic production + imports − exports, is the counterpart to αn(z)Ent in our
model. In principle, this information is available at the HS 6-digit level but issues such as classification changes
over time often require aggregation to higher levels. The original classification of the PRODCOM data is the
8-digit CN classification, which changes almost every year. We apply the procedure developed by Van Beveren,
Bernard, and Vandenbussche (2012) to map the CN classification to an artificial HS classification, “HS 6-
digit plus”, that is comparable over time and compatible with the 6-digit HS classification. The idea is to
aggregate both trade and PRODCOM data as little as possible and as much as required to guarantee a
one-to-one mapping between them. See their paper for an in-depth discussion of the procedure.

19The destination countries in our sample were either EU member states or had implemented free-trade
agreements (FTAs) with the EU before 2000 and therefore had no tariffs on EU imports. By contrast, China
did not have any FTAs with countries in our sample and EU external tariffs for imports from China only
had variation across industries. Thus, all variation in the FTA dummy or in tariffs would be absorbed by our
firm-industry-year fixed effects. Likewise, there is insufficient variation to include an indicator for common
language.

20The export destinations are: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czechia, Denmark, Estonia,
Finland, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the
Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Turkey, and
the United Kingdom.

21Possibly because of measurement issues in PRODCOM, we occasionally observe instances where ab-
sorption is smaller than a firm’s export value, resulting in market shares larger than one; in such cases, we
winsorize market shares to 0.95.
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market share is around 6%, substantially larger than the average exporter’s market share.

Moreover, at the 95th percentile the top firm enjoys a market share of almost 30%. Column

(3) presents information on the market shares of the top-3 exporters. The mean market

share in this sample is around 3.9%; at the 95th percentile, it is around 18%. Column (4)

shows the cumulative market shares of the top-3 exporters. The average cumulative market

share is equal to 7.30%; at the 95th percentile, it is 33.4%. In sum, in a significant minority

of destination markets, the largest French and Chinese exporters enjoy substantial market

shares.

Table 1: Summary Statistics for the Market Shares of French and Chinese Exporters

(1) (2) (3) (4)
All Top Top 3 Top 3

Exporters Exporters Exporters Exporters
(Cumulative)

Mean 0.40% 6.00% 3.88% 7.30%
5th pctile 0.00007% 0.01% 0.006% 0.03%
10th pctile 0.0004 0.03 0.02% 0.09%
Median 0.01% 1.21% 0.65% 2.05%
90th pctile 0.44% 15.72% 9.20% 19.36%
95th pctile 1.12% 28.96% 18.04% 33.44%
Observations 14,009,005 276,718 708,409 708,409

Notes: Table shows summary statistics for strictly positive market shares of French and Chinese exporters
for the years 2000–2010. The unit of observation is at the firm-destination-industry-year level.

Table 2 shows descriptive statistics for our estimates of σ and γ. We constrain coefficients

to be identical within 2-digit HS sectors to guarantee a sufficient number of observations

underlying each estimate. For the average and median sector, we estimate mildly decreasing

returns to scale of γ = 0.34 and γ = 0.19, respectively. For our price elasticity estimates, we

find a mean of σ = 5.39 and a median of σ = 3.74. These numbers are similar to estimates

at comparable levels of aggregation in the literature (e.g., Broda and Weinstein, 2006).

Estimation Results. All regressions are run on the sample of the top-3 French and Chinese

exporters for each 6-digit HS industry. As a first step, we pool all industries and years and

estimate equation (14) by OLS and equation (16) by PPML. We do so both on actual export

flows and on oligopoly-corrected export flows, as defined in equation (15).

For our main empirical specification, we assume constant returns to scale (γ = 0) and set

σ = 5 to construct the oligopoly correction term.22 The estimation results are reported in

22σ = 5 is a “conventional” value in the international trade literature (see, e.g., Gaubert and Itskhoki,
2021). Estimates of σ are often in the range from 4 to 6; for example, Gaubert and Itskhoki (2021) obtain
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Table 2: Price Elasticities and Returns-to-Scale Estimates

σ γ
Mean 5.39 0.34
25th Percentile 2.22 0.03
Median 3.74 0.10
75th Percentile 7.50 0.30
Min 1.01 -0.13
Max 26.07 4.46
Standard Deviation 4.07 0.69
Observations 78 78

Notes: Table shows descriptive statistics for estimates of σ and γ across 2-digit HS
sectors. Estimates computed using 6-digit HS firm-level information but constrained
to be identical within 2-digit HS sectors.

Table 3: Firm-Level Gravity Estimates, σ = 5 and γ = 0.

(1) (2) (3) (4)
Method PPML w/o corr PPML w/ corr OLS w/o corr OLS w/ corr
log distance -0.874*** -1.518*** -0.232*** -0.275***

(0.221) (0.020) (0.014) (0.013)

β̂distance 0.218 0.379 0.058 0.069
Observations 11,955,786 11,955,786 708,392 708,386
(Pseudo) R-squared 0.14 0.28 0.06 0.05
Firm-industry-year FE YES YES YES YES
Industry-dest.-year FE YES YES YES YES

Notes: Firm-level data, pooled across industries and years. Results for top 3 exporters. Oligopoly correction
with σ = 5 and γ = 0. Standard errors in parentheses, clustered at the destination-year level. *** p < 0.01,
** p < 0.05, * p < 0.1.

Table 4: Firm-Level Gravity Estimates, σ = 5.39 and γ = 0.34.

(1) (2) (3) (4)
Method PPML w/o corr PPML w/ corr OLS w/o corr OLS w/ corr
log distance -0.874*** -1.201*** -0.232*** -0.248***

(0.021) (0.118) (0.014) (0.014)

β̂distance 0.577 0.792 0.149 0.160
Observations 11,955,786 11,955,786 708,392 708,386
(Pseudo) R-squared 0.13 0.19 0.06 0.05
Firm-industry-year FE YES YES YES YES
Industry-dest.-year FE YES YES YES YES

Notes: Firm-level data, pooled across industries and years. Results for top 3 exporters. Oligopoly correction
with mean of estimated σ and γ. Standard errors in parentheses, clustered at the destination-year level. ***
p < 0.01, ** p < 0.05, * p < 0.1.
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Table 3. Columns (1) and (2) present the PPML estimates for the specification without and

with the oligopoly correction term, respectively. Without oligopoly correction, the distance

coefficient is strongly biased towards zero: The point estimate is −1.52 in column (2) but

only −0.87 in column (1). This confirms our theoretical insight that the trade elasticity with

respect to distance suffers from a substantial attenuation bias because firms systematically

reduce their markups in markets where they face higher variable trade costs and thus have

lower market shares. As a consequence, export values decrease by less than they would have

decreased under constant markups. The coefficient on distance corresponds to β(1−σ)/(1+

σγ). With σ = 5 and γ = 0, the implied estimated values of the distance elasticity of trade

costs, β̂, are 0.218 in column (1) and 0.359 in column (2), implying a downward bias of

around 44%.

Columns (3) and (4) report the OLS estimates for the specification without and with

the oligopoly correction term, respectively. In both cases, the absolute value of the esti-

mated distance coefficient is significantly lower than with PPML, suggesting a substantial

heteroscedasticity bias. The presence of such a bias is confirmed in our Monte Carlo simula-

tions in Section 5; see Table 12.

Table 4 is the analog of Table 3, but using the mean estimated σ and γ for the construction

of the oligopoly correction term. In our preferred specification (column (2), PPML with

oligopoly correction), the absolute value of the distance coefficient is now slightly smaller

(1.2), but still substantially larger than without oligopoly correction, implying an oligopoly

bias of 30%. The implied distance elasticity of trade costs, β̂, is now larger than in Table 3

(0.792 vs. 0.359), despite the slightly smaller estimated distance coefficient; this is entirely

driven by the fact that the estimated returns-to-scale parameter γ is substantially larger than

zero.23

We now turn to estimating gravity equations separately for each of the 78 HS 2-digit

sectors, pooling observations across 6-digit industries within a given 2-digit sector. (Recall

that, in the specifications in which σ and γ are estimated, those parameters are allowed

to vary at the sector level.) Table 5 reports summary statistics on the distribution of the

distance coefficient estimate (with and without oligopoly correction) and oligopoly bias across

sectors. We employ three alternative specifications: (1) σ = 5 and γ = 0; (2) σ estimated

and γ = 0; and (3) (σ, γ) estimated. In all specifications, the median point estimate on

an “imprecisely estimated” σ = 4.927, while Breinlich, Nocke, and Schutz (2020) calibrate σ = 5.163 in the
median 5-digit industry.

23 As shown in Table 19 in Appendix D, very similar results obtain when using (i) only the top French and
Chinese exporter and (ii) the top-5 French and Chinese exporters.
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distance is much larger when including the correction term. For our baseline specification

with σ = 5 and γ = 0, the median point estimate of the distance coefficient is −1.35, which

is close to the pooled estimate. By contrast, without the oligopoly correction the median

distance coefficient is only −0.51. There is substantial variation in the absolute percentage

oligopoly bias:24 For a sector at the 10th percentile, this bias is around 10%, but it increases

to 160% for a sector at the 90th percentile. Thus, in some industries, the oligopoly bias is

much larger than the pooled estimates would suggest.

Table 5: Firm-level Gravity Estimates by 2-digit Sector

Median est coefficient σ = 5, γ = 0 σ est, γ = 0 σ, γ est
log distance w/o corr -0.508 -0.065 -0.081
log distance w/ corr -1.347 -1.796 -0.740

β̂distance w/o corr 0.127 0.013 0.045

β̂distance w/ corr 0.337 0.779 0.445
abs. pct. bias (10th pctile) 10% 37.7% 8%
abs. pct. bias (median) 95.6% 100% 95.8%
abs. pct. bias (90th pctile) 160% 122% 165%

Notes: Firm-level data. Table shows summary statistics on the distribution of estimated
coefficients by 2-digit HS sector for top-3 exporters.

4 Empirical Implementation: Industry-Level Gravity

We now show how to empirically implement our gravity-estimation approach at the industry

level. Our empirical specification is

log r̃onz = ξoz + ζnz + β
1− σz

1 + σzγz
log(diston) + ηonz, (17)

where

log r̃onz = log ronz +
σ̂z − 1

1 + σ̂zγ̂z
sonz HHIonz . (18)

This corresponds to equations (13) and (12) above, with the industry (z) dimension being

made explicit, log(diston) being our only gravity variable (for the reasons explained in Sec-

tion 3), and ηonz ≡ ϕonz + εonz. We refrain from introducing a time index t because, in

the estimations below, we confine attention to data from the year 2010 for computational

reasons.25

24The absolute percentage bias is defined as the absolute value of (β̂w/o corr − β̂w/ corr)/β̂w/ corr.
25Similar results are obtained for other years.
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As in the previous section, we now turn to a discussion of the estimation challenges.

We then briefly describe our data, run gravity regressions with and without oligopoly cor-

rection, and investigate under what circumstances ignoring oligopolistic behavior leads to

quantitatively important biases.

Estimation Challenges. The self-selection of firms into export markets again poses prob-

lems for a consistent estimation of the intensive-margin elasticity of trade with respect to

distance, β(1 − σ)/(1 + σγ). If in each origin country o there were a single firm choosing

whether to enter any given destination country n, we would have the same sample selection

problem as at the firm level. While the ϕonz-term would be subsumed into the origin fixed

effect, the conditional expectation E(εonz|r̃onz > 0, ξoz, ζnz, diston) would depend on diston:

The observation that a firm is exporting to a remote market is likely to be the result of

that firm having received a favorable εonz-shock. With multiple potential exporters, this

problem remains. In addition to sample selection, however, a potential extensive-margin

bias arises whenever the set of exporters from o varies with n, so that the ϕonz-term can no

longer be subsumed into the origin fixed effect. In particular, the conditional expectation

E(ϕonz|r̃onz > 0, ξoz, ζnz, diston) is likely to depend on diston, as a larger number of firms

would presumably find it profitable to export to nearby destinations. Summarizing, while

the sample-selection bias tends to lead to an underestimation of the effect of distance on

trade, the extensive-margin bias tends to result in an overestimation.

To alleviate both biases, we apply the two-step procedure developed by Helpman, Melitz,

and Rubinstein (2008) (henceforth, HMR) to the oligopoly-corrected trade flows. The first

step consists in estimating a Probit model of whether positive trade flows between o and n

are observed. The regressors are origin and destination fixed effects, log diston, and bilateral

variables that are likely to affect the fixed export cost but not variable trade costs. For the

latter variables, we follow HMR and use: (i) A dummy equal to one if business startup time

is above the median in both o and n; and (ii) a dummy equal to one if business startup cost

is above the median in both o and n. The estimated conditional probability of observing

positive trade flows is denoted ρ̂onz.

The second step consists in estimating the following gravity equation:

log r̃onz = ζoz + ξnz + β
1− σz

1 + σzγz
Xonz + P (log Ẑonz) + ωλ̂onz + ηonz, (19)

where λ̂onz is the inverse Mills ratio from the first step, log Ẑonz is the ρ̂onz-quantile of the

standard normal distribution, and P (log Ẑonz) is a polynomial in log Ẑonz. The role of λ̂onz
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is to correct for sample selection, while P (log Ẑonz) addresses the extensive-margin bias by

non-parametrically controlling for ϕonz.

A downside of the HMRmethod is that it does not account for potential heteroscedasticity.

We therefore also run PPML regressions, which however address neither sample selection nor

the extensive-margin bias. The Monte Carlo simulations in Section 5 below indicate that

self-selection issues are more severe than problems arising from potential heteroscedasticity.

Data and Descriptive Statistics. To make the estimation sample consistent with our

firm-level regressions, we construct our industry-level data by aggregating our firm-level

data (described in Section 3 above) to the 6-digit HS level.26 We end up with information

on export values, market shares and HHIs at the origin-destination-industry level for two

exporting countries (France and China), 31 European destinations, and 1,864 industries for

the year 2010. Data on business startup times and costs are sourced from the Worldbank’s

Doing Business Database.

Table 6 presents summary statistics on exporter HHIs and aggregate market shares of

French and Chinese firms. It confirms that aggregate exports are concentrated among a small

number of firms: The mean exporter HHI (which corresponds to HHIon in equation (18)) is

0.55; at the 90th percentile, a single firm accounts for the total market share of each country.

Moreover, the mean aggregate market share of French and Chinese firms in each destination

(son in equation (18)) is around 9%; at the 90th percentile, that market share reaches 24%.

Thus, in many markets, these exporters have substantial market power.

Estimation Results. Before presenting our results, it is worth pointing out that, as our

industry-level data are constructed from firm-level data, we should expect to find estimates

for the distance coefficient similar to those at the firm level.

We first present results for the pooled regressions where we constrain β to be the same

across industries. Table 7 reports regression results with and without oligopoly correction,

but without controlling for selection. The table focuses on the baseline case σ = 5 and γ = 0.

26Researchers may not generally have firm-level data-sets for several countries available. We have also ex-
perimented with using PRODCOM absorption data, combined with product-level trade data from Eurostat’s
COMEXT database. For the exporter HHIs, we have used the World Bank’s Exporter Dynamics Database
(EDD) which provides Herfindahl indices at the destination level, computed from firm-level export data for
48 exporting countries at the HS 2-digit level. Given that this is a relatively high degree of aggregation (90
aggregated manufacturing products), we have also experimented with computing ‘pseudo-HHIs’ based on
8-digit import data from COMEXT. While these data are at the product level rather than the firm level,
they are highly disaggregated (ca. 9,600 different products). We thus need to make the assumption that
each origin-destination-product observation originates from a single firm, allowing us to compute HHIs based
on these data. The results with these alternative data-sets were similar to the ones based on aggregated
firm-level information. (Results are available upon request).
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Table 6: Summary Statistics for Industry-Level Market Shares and Exporter HHIs

Exporter HHI Destination Market
Share

Mean 0.53 10%
5th pctile 0.07 0.01%
10th pctile 0.12 0.06%
Median 0.48 3%
90th pctile 1 27%
95th pctile 1 48%

Notes: Industry-level data. Table shows summary statistics on the distribution of exporter ag-
gregate market share and HHI. The unit of observation is at the origin-destination-industry level.
Sample for year 2010.

The PPML estimates of the distance coefficient in columns (1) and (2) are much smaller

in magnitude than the ones obtained at the firm level, and not even statistically significant.

Thus, self-selection issues appear to lead to a strong attenuation bias in the PPML esti-

mates. By contrast, the OLS results presented in columns (3) and (4) look more reasonable:

The distance coefficient is −1.12 without, and −1.26 with, oligopoly correction. Thus, the

oligopoly bias is still at work at the industry level, albeit of a smaller magnitude (around

10%) than at the firm level. The finding that these estimates are somewhat smaller than

those at the firm level (−1.52 in our preferred firm-level specification; see Table 3) suggests

that the sample-selection bias is stronger than the extensive-margin bias.

Table 7: Industry-level Gravity Estimates without Controlling for Selection

(1) (2) (3) (4)
Method PPML w/o corr PPML w/ corr OLS w/o corr OLS w/ corr
log distance -0.263 -0.186 -1.128*** -1.260***

(0.168) (0.147) (0.195) (0.216)
Observations 107,064 107,064 66,563 66,563
(Pseudo) R-squared 0.49 0.36 0.31 0.29
Industry-origin FE YES YES YES YES
Industry-dest. FE YES YES YES YES

Notes: Industry-level data. Oligopoly correction with σ = 5 and γ = 0. Standard errors clustered at
destination level in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

We now apply the HMR approach to correct for self-selection into exporting. Table 8 re-

ports results from the step-one Probit estimation of the propensity to export.27 As expected,

27We include 2-digit sector-origin and 2-digit sector-destination fixed effects, as using 6-digit industry-origin
and industry-destination fixed effects is computationally infeasible with the Probit model. However, results
using a linear probability model indicate hardly any changes in the point estimates when adding these more
detailed fixed effects.
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the dummies for high business-startup cost and long business-startup time are negatively

and significantly associated with the propensity to export. Unsurprisingly, distance is also

negatively related to export propensity, providing evidence for sample selection.

Table 8: First Step of HMR Procedure (Export Propensity)

Export > 0
log distance -0.420*

(0.234)
high startup cost -1.340***

(0.421)
long startup time -2.102***

(0.337)
Observations 107,064
Sector-origin FE YES
Sector-dest. FE YES

Notes: Industry-level data. HMR step-one Probit regression of propensity to export.
Standard errors clustered at destination level. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table 9 reports results from the step-two HMR regression, using σ = 5 and γ = 0 in the

construction of the oligopoly correction term. The specifications in columns (1) and (2) only

include the inverse Mills ratio, and thus correct for sample selection but not for the extensive-

margin effect. Columns (3)–(6) show the results from the full HMR procedure. Columns

(3) and (4) include a quadratic function of log Ẑonz, while columns (5) and (6) include a

third-order polynomial. Throughout, the coefficient on distance in the specifications with

oligopoly correction is about 10% larger in magnitude than in those without. While the

oligopoly-corrected estimated coefficients are still slightly smaller than those estimated at

the firm level, they are larger than those from the OLS regression. This suggests that the

sample-selection bias is slightly stronger than the extensive-margin bias. As expected, the

specifications that only include the inverse Mills ratio yield the highest coefficient estimates,

as they do not control for the extensive-margin effect.

Table 10 reports the results for the same specifications, but using the mean estimates of σ

and γ for the oligopoly correction. While the point estimates on log distance hardly change,

the estimated fundamental distance coefficient (β̂) becomes significantly larger, as it did at

the firm level.

Finally, we run the HMR procedure as before, but now separately by 2-digit sectors

(which is also the level at which σ and γ are allowed to vary; see Table 2). Table 11 reports

summary statistics across sectors on the distribution of the estimated coefficients and the

magnitude of the oligopoly bias. While the oligopoly bias is relatively small in the median
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Table 9: Industry-level Gravity Estimates, σ = 5 and γ = 0

(1) (2) (3) (4) (5) (6)
Method Heck w/o Heck w/ HMR2 w/o HMR2 w/ HMR3 w/o HMR3 w/
log distance -1.189*** -1.327*** -1.151*** -1.284*** -1.150*** -1.284***

(0.198) (0.220) (0.190) (0.209) (0.193) (0.212)
inv. Mills -0.121 -0.130 0.678*** 0.799*** 0.639** 0.805**

(0.165) (0.182) (0.169) (0.192) (0.309) (0.344)

log Ẑ 0.907*** 1.067*** 0.736 1.097
(0.265) (0.293) (1.305) (1.396)

log Ẑ2 -0.103* -0.125** -0.0297 -0.137
(0.0565) (0.0621) (0.534) (0.567)

log Ẑ3 -0.0102 0.00176
(0.0693) (0.0732)

β̂distance 0.297 0.331 0.288 0.32 0.288 0.321
Observations 60,662 60,662 60,662 60,662 60,662 60,662
R-squared 0.30 0.28 0.30 0.28 0.30 0.28
Or.-ind. FE YES YES YES YES YES YES
Dest.-ind. FE YES YES YES YES YES YES

Notes: Industry-level data, pooled across industries, second step of HMR procedure. Oligopoly correction
with σ = 5 and γ = 0. Standard errors clustered at destination level in parentheses. *** p < 0.01, **
p < 0.05, * p < 0.1.

Table 10: Industry-level Gravity Estimates, σ = 5.39 and γ = 0.34

(1) (2) (3) (4) (5) (6)
Method Heck w/o Heck w/ HMR2 w/o HMR2 w/ HMR3 w/o HMR3 w/
log distance -1.189*** -1.243*** -1.151*** -1.202*** -1.150*** -1.202***

(0.198) (0.206) (0.190) (0.197) (0.193) (0.200)
inv mills -0.121 -0.124 0.678*** 0.725*** 0.639** 0.703**

(0.165) (0.171) (0.169) (0.178) (0.309) (0.322)

log Ẑ 0.907*** 0.969*** 0.736 0.876
(0.265) (0.275) (1.305) (1.338)

log Ẑ2 -0.103* -0.112* -0.0297 -0.0714
(0.0565) (0.0586) (0.534) (0.546) )

log Ẑ3 -0.0102 -0.00556
(0.0693) (0.0707)

β̂distance 0.767 0.802 0.743 0.776 0.743 0.776
Observations 60,662 60,662 60,662 60,662 60,662 60,662
R-squared 0.30 0.29 0.30 0.29 0.30 0.29
Or.-ind. FE YES YES YES YES YES YES
Dest.-ind. FE YES YES YES YES YES YES

Notes: Industry-level data, pooled across industries, second step of HMR procedure. Oligopoly correction
with mean of estimated σ and γ. Standard errors clustered at destination level in parentheses. *** p < 0.01,
** p < 0.05, * p < 0.1.
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sector, it is substantial in a significant minority of sectors. Moreover, the absolute oligopoly

bias is positively correlated with the product of the average (across origins, destinations, and

industries) Herfindahl index and the average exporting country’s aggregate market share,

with a correlation coefficient of 0.16, suggesting a larger bias in more-concentrated sectors.

Table 11: Industry-Level Gravity Estimates by 2-digit Sector

Median est coefficient σ = 5, γ = 0 σ est, γ = 0 σ, γ est
log distance w/o corr -0.880 -0.873 -0.872
log distance w/ corr -1.040 -1.023 -0.930

β̂distance w/ corr 0.260 0.294 0.622

β̂distance w/o corr 0.220 0.278 0.585
abs. pct. bias (10th pctile) 4% 1.4% 0.01%
abs. pct. bias (median) 13.7 % 11.2% 5.2%
abs. pct. bias (90th pctile) 39.9% 46.4% 19.4%

Notes: Industry-level data. Table shows summary statistics for the distribution of estimated
coefficients from the HMR procedure by 2-digit HS sector.

5 Monte Carlo Simulations

In this section, we perform Monte Carlo simulations to evaluate the merits of our oligopoly

correction terms. To this end, we develop and calibrate a model in which firms first self-

select into export destinations and then compete in quantities. Using the calibrated model,

we generate a Monte Carlo data-set to which we then apply our firm- and industry-level

estimation procedures. We confirm that our oligopoly correction significantly improves the

accuracy of our estimates.

Setup. The model is as described in Section 2, with λ = 1 (Cournot-Nash conduct). To

avoid general-equilibrium effects (and, in the next section, to obtain a money-metric measure

of social welfare), we assume that the representative consumer in each country has quasi-

linear preferences:28

Un = q0n + En

∫
z∈[0,1]

log

 ∑
j∈Jn(z)

ajn(z)
1
σ qjn(z)

σ−1
σ

 σ
σ−1

dz,

28This utility function is the quasi-linear version of the one in Section 2, with αn(z) ≡ 1. The En term in
front of the integral ensures that the representative consumer’s expenditures on the differentiated products
are En.
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where q0n denotes consumption of the outside good. For simplicity, we assume that parame-

ters (such as the elasticity of substitution, or various technology parameters that are described

in more detail below) do not vary across industries. Industries will still be heterogeneous due

to different realizations of random variables such as productivity draws.

Each country has a fixed labor endowment. The outside good is freely traded and pro-

duced using only labor with a constant-returns-to-scale technology that is the same in all

countries. We assume that parameters are such that it is produced in positive amount ev-

erywhere, so that its price is the same in all countries. We further choose that good as the

numeraire, which pins down the wage rate in all countries. In what follows, all costs should

be understood as being incurred in terms of labor.

We focus on an industry z ∈ [0, 1] and drop the industry index to ease notation. We now

put more structure on the distribution of cost and quality shocks, and on how firms make

entry decisions into export destinations.

Recall from Section 2 that the cost for firm i of producing and selling qin units in market

n is Cin(qin) =
1

1+γ
cinτinq

1+γ
in . We decompose cin log-linearly as log cin = εci + εcin, where εci

and εcin are independent draws from normal distributions with mean zero and variance υ2

and θ2, respectively. The iceberg-type trade cost τin is set equal to 1 if firm i is based in

country n and otherwise to τon ≡ T × (diston)
β, where o denotes the country in which firm

i is located, and T and β are parameters. Finally, we set ain (the quality of product i in

market n) equal to 1 for every i and n.29

A country-o firm that wants to sell in country n ̸= o must pay a fixed cost fon ≡ F ×
ϕo
on × ϕu

on, where F is a parameter and ϕo
on and ϕu

on are i.i.d. draws from a standard log-

normal distribution. The reason for this decomposition is that we will later assume that ϕo
on

is observable to the econometrician whereas ϕu
on is not, so that ϕo

on can be used as an excluded

first-stage variable when applying the HMR procedure. We set foo = 0 for every country o,

so that a firm is always active in its home market.

We consider a two-stage game of complete information in which firms first simultane-

ously decide which markets to enter, and then compete in quantities in each market. Under

oligopoly, this game is likely to have multiple subgame-perfect equilibria. If there were no

29Thus, using the notation of Section 2.2, we are setting

εcn = εai = εan = εain = ετi = ετn = ετin = 0.

The assumption that there is no destination-specific shock (εcn = εan = ετn = 0) is without loss of generality:
Since such shocks would affect all firms symmetrically, they would have no impact on equilibrium market
shares and profits given CES demand. As for the firm and firm-destination quality and trade-cost shocks, we
could alternatively assume that they are drawn i.i.d. from normal distributions and obtain an observationally
equivalent model, since the resulting firm types would still be log-normally distributed.
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fixed-cost heterogeneity, it would be possible to rank firms from highest to lowest (destination-

specific) type and construct a subgame-perfect equilibrium in which high-type firms enter

first. With fixed-cost heterogeneity (in addition to type heterogeneity), there is no such

natural ranking of firms and constructing a subgame-perfect equilibrium is a non-trivial

combinatorial problem. We therefore make the following simplifying behavioral assumption:

When making entry decisions, firms believe that they will receive monopolistic-competition

profits (given the set of firms that entered). We can then follow Spence (1976) and rank firms

according to their survival coefficients, (cinτon)
1−σ
1+σγ /fon, in each market n. This pins down

a natural “equilibrium” entry sequence in market n, in which firms with a higher survival

coefficient enter first.

Calibration. We choose parameter values to generate a Monte Carlo data-set broadly

similar to our firm-level data-set. We use the same set of countries as in the empirical

implementation and take the bilateral distance matrix diston directly from the data. Market

size in country n, En, is set equal to an amount proportional to that country’s GDP in the

data. We follow Chaney (2008) in assuming that the number of firms based in each country

is proportional to its GDP. The proportionality coefficient is chosen so that the total number

of firms is 220, which is similar to the number of firms in the average industry in our data-

set. The elasticity of substitution σ and the returns-to-scale parameter γ are set to 5 and 0,

respectively, as in our baseline empirical specification. Finally, we set β = 0.38, which is our

baseline empirical estimate of the distance coefficient (see Table 3).

We still require values for the following four parameters: F , the intercept of the fixed-

cost function; T , the intercept of the trade-cost function; υ, the standard deviation of firm

baseline productivity draws; and θ, the standard deviation of firm-destination productivity

shocks. We calibrate those parameters to match the following empirical moments (computed

using the French and Chinese firm-level data): 1. The fraction of firm-destination-industry-

year observations with zero trade flows (92%); 2. the mean (by destination-industry-year)

aggregate combined market share of French and Chinese firms (13.9%); 3. the median (by

origin-industry-year) 90/10 ratio of firm-level total exports (451); and 4. the median (by

origin-destination-industry-year) 90/10 ratio of firm-destination exports (220).

The fact that each of the moments has a natural parameter counterpart gives rise to

the following informal identification argument. Intuitively, we expect F to have a strong

and negative effect on the first moment, T to have a strong and negative effect on the

second moment, υ to have a strong and positive effect on the third moment, and θ to have

a strong and positive effect on the fourth moment. In practice, we adjust the vector of
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parameters (F, T, υ, θ) to minimize the sum of the squared Davis-Haltiwanger deviations

between theoretical and empirical moments.30

We approximate the theoretical moments using Monte Carlo integration. For each pa-

rameter vector, we perform 10 Monte Carlo runs.31 For each run, we randomly draw vectors

and matrices of firm-level baseline costs (εci), firm-destination cost shocks (εcin), and fixed-cost

shocks (ϕo
on) and (ϕu

on). For each destination within a run, we then compute the equilibrium

of the entry stage and, using a variant of Nocke and Schutz (2018b)’s nested fixed-point

algorithm, the equilibrium of the quantity-setting stage. Having done that for all ten runs,

we compute arithmetic means (for moments 1 and 2) and medians (for moments 3 and 4) to

obtain Monte Carlo approximations to our theoretical moments.

Our calibration algorithm converges to F = 3.62× 10−9 (times total world expenditures

in the industry, which we normalized to unity), T = 0.827, υ = 0.394, and θ = 1.23. We

obtain nearly perfect matches for the second, third, and fourth moments (0.140, 449, and

220, respectively, vs. 0.139, 451, and 220 in the data), and we slightly under-predict the

fraction of zeros in the firm-level export matrix (82.8% vs. 92% in the data). The resulting

sum of squared deviations is 0.011.

Data generation and results. Using the calibrated parameters, we generate the Monte

Carlo data-set. We perform 200 Monte Carlo runs. Each run features different realizations of

the random vectors and matrices of firm-level baseline costs (εci), firm-destination cost shocks

(εcin), and fixed-cost shocks (ϕo
on and ϕu

on), and can thus be thought of as a different industry

or a different time period. For each run, we compute the equilibrium of the entry model and

of the quantity-setting game in all markets, and we store firm-level sales and market shares,

origin, destination, firm, and run indicators, and bilateral distance and observable fixed-cost

shocks. To make the data-set comparable to the one used in our empirical applications, we

keep observations only for firms based in the countries corresponding to France and China.

We thus obtain a firm-level data-set, which we also aggregate up to construct an industry-

level data-set. On these, we run our firm- and industry-level regressions to evaluate the

30The Davis-Haltiwanger deviation (Davis, Haltiwanger, and Schuh, 1996) is defined as the difference
between the theoretical and empirical moments, divided by the arithmetic average of the theoretical and
empirical moments. This residual converges to the percentage deviation when the theoretical moment tends
to the empirical moment. The advantage of using this residual for our calibration procedure is that, in
contrast to the percentage deviation, it always remains bounded and gives rise to symmetric punishments for
positive and negative deviations.

31Note that, while the number of Monte Carlo runs is small, each run generates data for about 100 firms and
33 destinations, so that there is relatively little variation in theoretical moments across runs. Increasing the
number of runs beyond 10 would only make a small difference, but would substantially increase computational
requirements.
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performance of our oligopoly correction terms.

Table 12 reports the results from our firm-level regressions. A first observation is that

all OLS estimates are strongly biased towards zero, consistent with the heteroskedasticity

bias discussed in Section 3 and with the empirical results in Table 3. Focusing now on

PPML estimates, we see that the specification without oligopoly correction significantly

underestimates the absolute value of the distance coefficient. The PPML specification with

oligopoly correction delivers an estimate that is very similar to the true distance coefficient

(−1.52). Interestingly, the (biased) PPML estimate without oligopoly correction is very close

to the empirical estimate in Table 3 (−0.851 vs. 0.874). Thus, our Monte Carlo data-set

generates an oligopoly bias almost identical in size to the one obtained in our empirical

analysis.32

Table 12: Monte Carlo: Firm-Level Results

(1) (2) (3) (4)
Method PPML w/o corr PPML w/ corr OLS w/o corr OLS w/ corr
log distance -0.851*** -1.403*** -0.454** -0.472**

(0.135) (0.365) (0.202) (0.214)
Observations 30,198 30,198 9,529 9,529
(Pseudo) R-squared 0.21 0.74 0.48 0.47
Firm-run FE YES YES YES YES
Destination-run FE YES YES YES YES

Notes: Monte Carlo data-set, firm-level data, pooled across Monte Carlo runs. Results for top 3 exporters.
Cournot model with σ = 5 and γ = 0. Standard errors clustered at the destination level in parentheses. ***
p < 0.01, ** p < 0.05, * p < 0.1. True log-distance coefficient is −1.52.

Table 13 reports the estimation results from industry-level regressions. In all specifica-

tions, our oligopoly correction improves the accuracy of the distance-coefficient estimate.

Specifications that account for self-selection (columns ‘Heck’ and ‘HMR’), when combined

with our correction term, deliver estimates that are very close to the true value of -1.52.

Interestingly, the PPML estimator delivers by far the worst results, as it did in our empirical

application in Section 4.

6 Counterfactual Simulations

In this section, we turn to the welfare effects of a trade liberalization, and quantitatively

assess the importance of accounting for oligopolistic behavior. We do so by calibrating two

32As shown in Table 20 in Appendix D, very similar results obtain when using (i) only the top French and
Chinese exporter and (ii) the top-5 French and Chinese exporters.
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Table 13: Monte Carlo: Industry-Level Results

(1) (2) (3) (4) (5) (6) (7) (8)
Method PPML w/o PPML w/ OLS w/o OLS w/ Heck w/o Heck w/ HMR w/o HMR w/
log distance -0.849*** -1.044*** -1.272*** -1.383*** -1.282*** -1.399*** -1.298*** -1.418***

(0.0549) (0.0760) (0.0658) (0.0728) (0.0957) (0.108) (0.0990) (0.111)
inv. Mills 0.795 0.909 -8.251 -8.456

(0.523) (0.610) (5.890) (7.124)

log Ẑ -16.73 -17.16
(14.29) (17.25)

log Ẑ2 5.983 6.119
(5.813) (7.013)

log Ẑ3 -0.727 -0.743
(0.810) (0.975)

Observations 12,132 12,132 11,094 11,094 8,296 8,296 8,296 8,296
R-squared 0.15 0.29 0.64 0.61 0.64 0.62 0.64 0.62
Or.-run FE YES YES YES YES YES YES YES YES
Dest.-run FE YES YES YES YES YES YES YES YES

Notes: Monte Carlo data-set, industry-level data, pooled across Monte Carlo runs. Cournot model with
σ = 5 and γ = 0. Standard errors clustered at the destination level in parentheses. *** p < 0.01, ** p < 0.05,
* p < 0.1. True log-distance coefficient is −1.52.

versions of the model of Section 5: the oligopoly (‘oli ’) version, in which λ = 1 (Cournot-

Nash conduct) and the distance coefficient is set equal to our baseline empirical estimate

with the oligopoly correction term; and the monopolistic competition (‘mc’) version in which

λ = 0 (monopolistic-competition conduct) and the distance coefficient is our baseline estimate

without the correction term. We calibrate both versions by matching the same moments in

the data, and then use them to simulate a 10% trade-cost reduction and compute the induced

welfare effects.

Setup. The setup is as described in Section 5, with the following amendments. First, at

the entry stage of the oli version, firms now correctly expect to earn oligopoly profits. As

discussed above, in the oli version such correct conjectures make it infeasible to solve for a

subgame-perfect equilibrium under fixed-cost heterogeneity. We thus, second, assume that

the fixed export cost, f > 0, does not vary across origin-destination pairs. This allows us

to rank firms from highest to lowest type and construct an equilibrium of the entry game in

which firms with a higher type enter first. Finally, we increase the number of firms based in

each country by 1 to ensure that each market is always served by at least two firms, so that

consumer surplus is always finite.33

Calibration. The set of countries, the bilateral distance matrix, each country’s market size,

the coefficient that determines the number of firms in each country, the elasticity of substi-

tution, and the returns-to-scale parameter are as in Section 5. The distance coefficient, β, is

33Under CES demand, a monopolist would set an infinite price, resulting in consumer surplus being equal
to minus infinity.
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set to 0.38 in the oli version and to 0.22 in the mc version, which corresponds to our base-

line empirical estimates with and without oligopoly correction (see Table 3). The remaining

parameters (f , T , υ, and θ) are chosen to match the same moments as in the previous sec-

tion. The theoretical moments are again approximated using Monte Carlo integration with

10 iterations.

For the oli version, the calibration algorithm converges to f = 1.36 × 10−8, T = 0.379,

υ = 0.406, and θ = 1.15. The calibrated model does a very good job of matching the 90/10

dispersion moments (218 and 456 for firm-destination and firm-level exports, respectively, vs.

220 and 451 in the data) and the mean aggregate share of French and Chinese firms (13.6%

vs. 13.9% in the data) but tends to under-predict the fraction of zeros in the firm-level export

matrix (79.8% vs. 92% in the data). This results in a sum of squared deviations of 0.0207.

The fit of the mc calibration is almost as good, with a sum of squared residuals of 0.0262.

The calibrated model continues to provide a good match for the 90/10 and aggregate-share

moments (221, 455, and 14.2%, respectively) but still under-predicts the fraction of zeros

(78.4%). The values of the productivity parameters υ and θ are close to the oli calibration

(υ = 0.257 and θ = 1.15). Productivities are slightly less dispersed in the mc calibration,

which is intuitive since the sales distribution tends to be more compressed under oligopoly

due to incomplete passthrough. As profits tend to be lower under monopolistic competition,

the calibrated fixed cost (f = 5.67 × 10−9) is lower than in the oli calibration. Finally, the

fact that the distance coefficient β is significantly lower in the mc calibration mechanically

reduces trade costs to all destinations. This results in the intercept of the trade cost function

(T = 1.62) being higher than in the oli calibration, so as not to overpredict the exports of

French and Chinese firms.

Computing social welfare. Plugging country n’s budget constraint into the representative

consumer’s utility function, we obtain an expression for social welfare in that country (up to

an additive constant):

Wn =

∫
z∈[0,1]

En

 σ

σ − 1
log

 ∑
j∈Jn(z)

qjn(z)
σ−1
σ

− 1

+Πn(z)

 dz, (20)

where Πn(z) represents the total profits made by firms based in country n.34 To report the

values of our welfare measures in U.S. dollars, we set En equal to country n’s GDP share in

our data-set multiplied by the value added in manufacturing, added up over all 33 countries.

34We are thus assuming that firms are owned by the residents of their country of origin. The results are
very similar when assuming instead that consumers own an internationally diversified portfolio.
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Figure 1: Welfare Effects of a 10% Trade Cost Reduction (in USD per Capita)

Notes: Figure shows the effects of a 10% trade cost reduction on per-capita welfare (measured in USD), by
country, under oligopoly (oli) and monopolistic competition (mc).

As in Section 5, the integral in equation (20) is approximated using Monte Carlo integration

with 200 iterations (i.e., 200 industries).

Results. We simulate the equilibrium effects of a 10% reduction in variable trade costs using

the oli and mc versions of the model. Figure 1 reports the resulting changes in social welfare

per capita.35 According to our simulations, the welfare gains from a trade liberalization are

substantially higher under oligopoly, with the average European consumer experiencing a

utility gain of USD 319 in the oli version and USD 181 in the mc version. A similar picture

emerges when looking at individual European countries, with most countries experiencing

gains from trade that are at least 30% higher in the oli calibration than in the mc calibration.

In large, central countries such as France or Germany, the gains from trade under oligopoly

are almost three times as high as in the mc calibration.

To better understand what drives the difference between the oli and the mc predictions,

we decompose the welfare effects of the trade liberalization into: 1. a trade-cost component

(the marginal costs of all exporters decrease by 10%, holding fixed all markups and the

35To improve the figure’s readability, we have dropped two outliers, Iceland and Luxemburg, for which the
gains from trade under oligopoly significantly exceed USD 1,500 per capita. We have also dropped China,
which, in this model, benefits very little from trade liberalization, due to it being a remote market to which
very few firms find it profitable to export.
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set of exporters); 2. a domestic-markups component (due to increased competitive pressure,

domestic firms lower their markups); 3. a foreign-markups component (exporters, whose

market shares have increased, raise their markups); and 4. an extensive-margin component

(the set of exporters adjust).

We now report on the magnitude of these components for European social welfare per

capita; the general picture is similar when looking at individual European countries. In our

simulations, the extensive-margin component is negligible under both oligopoly and monopo-

listic competition. The domestic-markups component raises per-capita welfare by USD 67 in

the oli version, while the foreign-markups component lowers it by USD 20; both components

are of course inoperative under monopolistic competition. Finally, the trade-cost component

raises per-capita welfare by USD 272 in the oli version, and by USD 181 in the mc version.

Thus, around two-thirds of the gap between the gains from trade under oligopoly and monop-

olistic competition can be attributed to the fact that the oli calibration results in different

trade cost parameters, with the remaining third being explained by markup adjustments.36

This highlights the importance of obtaining a reliable estimate of the distance coefficient β.

7 Conclusion

We have shown that the standard approach to gravity estimation of trade flows suffers from

an omitted variable bias when firms behave oligopolistically. We have proposed methods to

purge the observed trade flows from market-power effects and thus obtain consistent estimates

of gravity parameters. Using French and Chinese export data and Monte Carlo simulations,

we have shown that accounting for oligopoly is quantitatively important. When estimating

gravity at the firm level, the elasticity of trade flows with respect to distance is twice as

large when correcting for market power. While the magnitude of the oligopoly bias is smaller

when estimating gravity at the industry level, it is still substantial in a significant minority

of industries, in which exports tend to be highly concentrated. In a calibrated version of our

model, the welfare gains from a trade liberalization are almost twice as large under oligopoly

as under monopolistic competition. These findings reinforce the view that market power

effects matter in international trade.

36Our results thus contrast with those of Arkolakis, Costinot, Donaldson, and Rodriguez-Clare (2019) in
two dimensions. First, while they find that the welfare gains from trade liberalization are lower under variable
markups, we find larger gains under oligopoly than under monopolistic competition with constant markups.
Second, while they report that the (negative) foreign-markups component more than outweighs the (positive)
domestic-markups component, we obtain the opposite.

32



Appendix

A Proofs

A.1 Proof of Proposition 1

Proof. To complete the proof of the proposition, we need to: (a) Show that the function

S is well defined, and study its monotonicity properties and its limits; (b) show that the

equilibrium condition (11) has a unique solution; (c) show that, at λ = 1, the first-order

conditions of profit maximization are sufficient for global optimality. We do so below. In the

following, we drop the destination index (n) to ease notation.

(a) As 1 + σγ > 0, the right-hand of equation (10) is strictly increasing in si, whereas the

left-hand side is non-increasing in si. It follows that equation (10) has at most one solution.

As si tends to 0, the left-hand side of that equation tends to 1, whereas the right-hand side

tends to 0. As si tends to ∞, the left-hand side tends to 1 or −∞, and the right-hand side

tends to +∞. The equation therefore has a unique solution, S(Ti/H, λ) ∈ (0, 1/λ), where

1/λ ≡ ∞ when λ = 0.

It is easily checked that S(·, ·) is strictly increasing in its first argument and strictly

decreasing in its second argument. By monotonicity, S(·, λ) has limits at 0 and ∞. Clearly,

those limits are equal to 0 and 1/λ, respectively.

(b) The results in part (a) of the proof imply that the left-hand side of equation (11) is

strictly decreasing in H, and has limits 0 and |J |/λ as H tends to ∞ and 0, respectively. It

follows that equation (11) has a unique solution, H∗(λ).

(c) Rewriting equation (2) with λ = 1 and rearranging terms yields:

∂πi

∂qi
= qγi

σ − 1

σ
αE

a
1
σ
i q

− 1+σγ
σ

i∑
j∈J a

1
σ
j q

σ−1
σ

j

1− a
1
σ
i q

σ−1
σ

i∑
j∈J a

1
σ
j q

σ−1
σ

j

− ciτi

 .

As 1 + σγ > 0, the term inside square brackets is strictly decreasing in qi. Moreover, that

terms tends to +∞ and −τici as qi tends to 0 and +∞, respectively. It follows that qi

maximizes firm i’s profit if and only if firm i’s first-order condition holds at qi.

33



A.2 Proof of Proposition 2

Proof. To apply Taylor’s theorem, we require the value of s∗′on(0). This requires computing

the partial derivatives of S(·, ·) at λ = 0 and H∗′
n (0). Differentiating equation (10) with

respect to sin, λ, and tin ≡ Tin/Hn at λ = 0 yields

−sindλ =
1 + σγ

σ − 1

dsin
sin

− σ(1 + γ)

σ − 1

dtin
tin

.

It follows that37

tin∂1 logS(tin, 0) =
σ(1 + γ)

1 + σγ
and ∂2 logS(tin, 0) = − σ − 1

1 + σγ
S(tin, 0).

Next, we differentiate equation (11) with respect to λ and Hn:

∑
j∈Jn

[
−Tjn

H
∂1S

(
Tjn

H
, λ

)
dHn

Hn

+ ∂2S

(
Tjn

Hn

, λ

)
dλ

]
= 0.

Setting λ = 0 and plugging in the values of the partial derivatives of S, we obtain:

∑
j∈Jn

[
−σ(1 + γ)

1 + σγ
s∗jn(0)

dHn

Hn

− σ − 1

1 + σγ

(
s∗jn(0)

)2
dλ

]
= 0.

Making use of the definition of HHIn(0) and of the fact that market shares add up to unity,

we obtain:
H∗′

n (0)

H∗
n(0)

= − σ − 1

σ(1 + γ)
HHIn(0).

We can now compute s∗′in(0):

s∗′in(0) =
∂

∂λ
S

(
Tin

H∗
n(λ)

, λ

)∣∣∣∣
λ=0

= − Tin

H∗
n(0)

∂1S

(
Tin

H∗
n(0)

, 0

)
H∗′

n (0)

H∗
n(0)

+ ∂2S

(
Tin

H∗
n(0)

, 0

)
=

σ − 1

1 + σγ

[
s∗in(0)HHIn(0)− (s∗in(0))

2] .
37Notation: ∂kS is the partial derivative of S with respect to its kth argument.
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It follows that

s∗′on(0)

s∗on(0)
=

σ − 1

1 + σγ

1

s∗on(0)

∑
j∈Jon

[
s∗jn(0)HHIn(0)−

(
s∗jn(0)

)2]
=

σ − 1

1 + σγ

[
HHIn(0)− s∗on(0)

∑
j∈Jon

(
s∗jn(0)

s∗on(0)

)2
]

=
σ − 1

1 + σγ
[HHIn(0)− s∗on(0)HHIon(0)] .

Applying Taylor’s theorem at the first order in the neighborhood of λ = 0 yields:

log s∗on(λ) = log s∗on(0) +
d

dλ
log s∗on(λ)

∣∣∣∣
λ=0

λ+ o(λ)

= log s∗on(0) +
σ − 1

1 + σγ
[HHIn(0)− s∗on(0)HHIon(0)]λ+ o(λ)

= log s∗on(0) +
σ − 1

1 + σγ
[HHIn(λ)− s∗on(λ)HHIon(λ)]λ+ o(λ),

where the last line follows from the fact that HHIn(λ) − HHIn(0) and s∗on(λ)HHIon(λ) −
s∗on(0)HHIon(0) are at most first order.

B Estimation of Supply and Demand Elasticities

Feenstra (1994) and Broda and Weinstein (2006) propose estimators for the elasticity of

substitution, σ, based on the key identifying assumption that shocks over time to import

demand and export supply for a given product are uncorrelated. The equivalent condition

in our context is that E (εainε
τc
i′n′) = 0 for all i, i′ and n, n′, where ετcin = ετin + εcin. That is,

we assume that the firm-destination-level elements of taste and cost shocks are uncorrelated

across firms and markets.

Note that this assumption is consistent with non-zero correlations between overall taste

and cost shocks (i.e., E (aincin) ̸= 0 is allowed). In particular, our method allows for a positive

correlation between firm-level costs and quality (εai and εci) which is to be expected if the

production costs of firms producing high-quality products are higher. Likewise, our results

are robust to a positive correlation between destination market quality and cost shocks (εan

and εcn). For example, such a correlation could arise if firms sell higher-quality goods to

high-income markets and incur positive costs of doing so.

We start our derivation by expressing firm-level revenues of firm i in market n in terms
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of expenditure shares. From equation (1),

log sin = log

(
pinqin
En

)
= log ain + (1− σ) pin + (σ − 1) logPn.

Now assume that we observe another firm i′ selling to the same market n. We can then

subtract the logged market share of that firm to eliminate the price index:38

∆f log sin = log sin − log si′n = log ain − log ai′n + (1− σ) (log pin − log pi′n)

If we observe the same two firms in another destination n′, we can compute a double difference

across the two markets as

∆d∆f log sin = (1− σ)∆d∆f log pin +∆d∆f log ain,

where ∆f and ∆d denote log differences across firms and destinations, respectively. Note

that double differencing only leaves the firm-destination-level parts of the taste shocks:

∆d∆f log ain = (εain − εai′n)− (εain′ − εai′n′) .

We next derive a similar supply-side equation. We start by rewriting firm i’s price in

market n as p1+γ
in =

(
cinτin
1−µin

)
(sinEn)

γ. Taking logs yields

(1 + γ) log pin = log (cinτin)− log (1− µin) + γ log sin + γ logEn.

Double differencing across firms and markets as above, we obtain

(1 + γ)∆d∆f log pin = ∆d∆f log (cinτin)−∆d∆f log (1− µin) + γ∆d∆f log sin,

where the double-differenced cost shock again only contains the parts of production and trade

costs that are at the firm-destination level:

∆d∆f log (cinτin) = (ετcin − ετci′n)− (ετcin′ − ετci′n′) .

Note that as per our identifying assumption, the double-differenced cost and taste shocks are

38In principle, we could also subtract the average across all firms active in market n. However, we will
argue below that taking differences across individual firms with high market shares is better suited to dealing
with selection problems.
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uncorrelated, yielding the following moment condition:

E
(
∆d∆f log ain ×∆d∆f log (cinτin)

)
= 0.

For given σ and γ, we can construct the sample analogues from data on export prices and

market shares:

̂∆d∆f log (cinτin) = (1 + γ)∆d∆f log pin +∆d∆f log (1− µin)− γ∆d∆f log sin

and

̂∆d∆f log ain = ∆d∆f log sin − (1− σ)∆d∆f log pin.

The sample analogue of our moment condition is then given by

Ψ (σ, γ) =
1

|Jnn′ |
∑

j∈Jnn′

̂∆d∆f log ain × ̂∆d∆f log (cinτin),

where Jnn′ denotes the set of firms active in the same two markets. Notice that we obtain

one moment condition per country pair. Stacking these up allows to implement a standard

GMM estimator of σ and γ.39

This still leaves us with a potential selection problem in our GMM estimation procedure

for σ and γ. As a solution, we focus again on the top 3 French and Chinese exporters (in terms

of their overall exports) for any given 6-digit HS industry. Finally, to obtain a sufficiently

large number of observations for the computation of moments in our GMM estimation, we

restrict the estimates of σ and γ to be identical within 2-digit HS sectors.

C Price Competition

C.1 Theoretical Results

Under price competition, the profit of firm i when selling in destination n is:

πin = pinainp
−σ
in P σ−1

n αnEn − Cin

(
ainp

−σ
in P σ−1

n αnEn

)
,

where we have dropped the industry index z for ease of notation.

39In practice, this means that we need to observe a sufficiently large number of firms selling in the same
industry in at least three different markets.
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The degree of strategic interactions between firms continues to be governed by the conduct

parameter λ ∈ [0, 1]: When firm i increases its price by an infinitesimal amount, it perceives

the induced effect on Pn to be equal to λ∂Pn/∂pin. It is still the case that monopolistic

competition arises when λ = 0, whereas Bertrand competition arises when λ = 1. The

first-order condition of profit maximization of firm i in destination n is given by

0 =
∂πin

∂pin
= ainp

−σ
in P σ−1

n αnEn + (pin − C ′
in(qin))

[
− σ

pin
+

σ − 1

Pn

λ
∂Pn

∂pin

]
αnEnainp

−σ
in P σ−1

n

= qin

(
1− pin − C ′

in(qin)

pin
[σ − λ(σ − 1)sin]

)
, (21)

where

sin ≡ ainp
1−σ
in∑

j∈J ajnp
1−σ
jn

(22)

continues to be the market share of firm i in destination n.

Equation (21) pins down firm i’s optimal markup under price competition:

µin =
1

σ − λ (σ − 1) sin
,

where µin =
pin−C′

in(qin)

pin
is firm i’s Lerner index. Apart from this change in the expression for

the firm’s optimal markup, all other firm-level results go through as before.

We now turn our attention to the industry-level results. As in Section 2.3, we begin

by employing an aggregative games approach to analyze the equilibrium in a given market,

dropping the market subscript n to ease notation. The market-level aggregator H is now

defined as

H ≡ P 1−σ =
∑
j∈J

ajp
1−σ
j

and firm i’s type as

Ti ≡ ai (αE)
γ(1−σ)
1+γ (ciτi)

1−σ
1+γ .

Plugging these definitions into equation (21), making use of equation (22), and rearrang-

ing, we obtain: (
1− s

1+σγ
σ−1

i

(
H

Ti

) 1+γ
σ−1

)
(σ − λ(σ − 1)si) = 1. (23)
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Note that the left-hand side of equation (23) is strictly decreasing on the interval(
0,min

{
σ

λ(σ − 1)
,

(
Ti

H

) 1+γ
1+σγ

})

and tends to σ and 0 as si tends to the lower and upper endpoints of that interval, respectively.

Equation (23) therefore has a unique solution on the above interval, denoted S(ti, λ) with

ti ≡ Ti/H. (Solutions outside that interval necessarily give rise to strictly negative markups

and are thus suboptimal.)

It is easily checked that S is strictly increasing in its first argument, strictly decreasing

in its second argument, and tends to 0 and 1/λ as ti tends to 0 and ∞, respectively.

As before, the equilibrium condition is that market shares must add up to unity:

∑
j∈J

S

(
Ti

H
, λ

)
= 1. (24)

The properties of the function S, described above, imply that this equation has a unique

solution, H∗(λ).

To summarize:

Proposition A. In each destination market, and for any conduct parameter λ, there exists

a unique equilibrium in prices. The equilibrium aggregator level H∗(λ) is the unique solution

to equation (24). Each firm i’s equilibrium market share is s∗i (λ) = S(Ti/H
∗(λ), λ), where

S(Ti/H
∗(λ), λ) is the unique solution to equation (23).

Proof. All that is left to do is check that first-order conditions are sufficient for optimality

when λ = 1. Combining equations (21) and (23) yields:

∂πi

∂pi
= qi [1− χ(pi)ϕ(pi)] ,

where

χ(pi) ≡ 1−

(
aip

1−σ
i∑

j ajp
1−σ
j

) 1+σγ
σ−1

(∑
j ajp

1−σ
j

Ti

) 1+γ
σ−1

and ϕ(pi) ≡ σ − (σ − 1)
aip

1−σ
i∑

j ajp
1−σ
j

.

As 1 + σγ > 0, the functions χ and ϕ are strictly increasing. Moreover, ϕ(pi) > 0 for every

pi, whereas there exists p̃i > 0 such that χ(pi) > 0 if pi > p̃i and χ(pi) < 0 if pi < p̃i.

Hence, πi is strictly increasing on the interval (0, p̃i), and firm i’s first-order condition holds
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nowhere on that interval. The fact that limpi→∞ χ(pi) = 1 and limpi→∞ ϕ(pi) = σ and the

monotonicity properties of χ and ϕ on (p̃i,∞) imply the existence of a unique p̂i at which

firm i’s first-order condition holds. Moreover, πi is strictly increasing on (p̃i, p̂i) and strictly

decreasing on (p̂i,∞). First-order conditions are therefore sufficient for optimality.

Having characterized the equilibrium in a given destination, we now adapt the first-order

approach to industry-level gravity to the case of price competition. As in Section 2.3, let

E ⊊ J denote the subset of exporters in country e that sell in the destination market n. The

combined market share of those exporters in market n is given by

s∗e(λ) ≡
∑
i∈E

s∗i (λ).

As before, we approximate s∗e(1) at the first order. The definitions of HHI and HHIe are as

in Section 2.3.

We obtain:

Proposition B. At the first order, in the neighborhood of λ = 0, the logged joint market

share in destination n of the firms from export country e is given by

log s∗e(λ) = log s∗e(0) +
σ − 1

σ(1 + σγ)
[HHI(λ)− s∗e(λ)HHIe(λ)]λ+ o(λ).

Proof. The proof follows the same developments as the proof of Proposition 2. We begin by

computing the partial derivatives of S at λ = 0. It is useful to rewrite first equation (23) as

si = t
1+γ
1+σγ

i

(
1− 1

σ − λ(σ − 1)si

) σ−1
1+σγ

. (25)

Taking the logarithm and totally differentiating the equation at λ = 0 yields:

dsi
si

=
1 + γ

1 + σγ

dti
ti

− σ − 1

σ(1 + σγ)
sidλ.

The partial derivatives of S are thus given by

ti∂1 logS(ti, 0) =
1 + γ

1 + σγ
and ∂2 logS(ti, 0) = − σ − 1

σ(1 + σγ)
S(ti, 0).
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To obtain H∗′(0), we differentiate equation (24):

∑
j∈J

[
−Tj

H
∂1S

(
Tj

H
, λ

)
dH

H
+ ∂2S

(
Tj

H
, λ

)
dλ

]
= 0.

Setting λ = 0, plugging in the values of the partial derivatives of S, and using the fact that

market shares add up to unity, we obtain:

H∗′(0)

H∗(0)
= − σ − 1

σ(1 + γ)
HHI(0).

Next, we compute s∗′i (0):

s∗′i (0) = − Ti

H∗(0)
∂1S

(
Ti

H∗(0)
, 0

)
H∗′(0)

H∗(0)
+ ∂2S

(
Ti

H∗(0)
, 0

)
=

σ − 1

σ(1 + σγ)

[
s∗i (0)HHI(0)− (s∗i (0))

2] .
Adding up and dividing by s∗e(0) yields:

s∗′e (0) =
σ − 1

σ(1 + σγ)
[HHI(0)− s∗e(0)HHIe(0)] .

As in the proof of Proposition 2, we can then apply Taylor’s theorem to obtain the result.

Proposition B motivates the following approximation:

log s∗e(1) ≃ log s∗e(0) +
σ − 1

σ(1 + σγ)
[HHI(1)− s∗e(1)HHIe(1)] .

As in Section 2.3, this approximation can then be used to derive the industry-level gravity

regression

log r̃en = ζe + ξn + β
1− σ

1 + σγ
Xen + ηen

where

log r̃en ≡ log ren +
σ − 1

σ(1 + σγ)
senHHIen

is the value of export flows from e to n, purged from oligopolistic market power effects.

Note that the correction term under price competition is equal to the one under quantity

competition divided by σ.
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C.2 Empirical Results

Table 14 presents results for our estimates of σ and γ using the estimation procedure from

Section B but replacing the Cournot markup formula with its Bertrand equivalent. This only

leads to minor changes in coefficient estimates.

Table 14: Price Elasticities and Returns-to-Scale Estimates – Price Competition

σ γ
Mean 4.96 0.31
25th Percentile 2.06 0.02
Median 3.27 0.10
75th Percentile 5.22 0.28
Min 1.01 -0.11
Max 26.03 4.5
Standard Deviation 4.89 0.67
Observations 78 78

Notes: Table shows descriptive statistics for estimates of σ and γ. Estimates computed using
6-digit HS firm-level information but constrained to be identical within 2-digit HS sectors.

Tables 15–16 show results for the pooled firm-level regressions. In all specifications,

the point estimates on the distance coefficient are much larger in absolute magnitude when

correcting for oligopoly bias. The absolute value of the distance coefficient is slightly smaller

than with Cournot competition.

Tables 17–18 show results for the pooled industry-level regressions. Again, the distance

coefficient becomes larger in absolute magnitude when including the oligopoly correction

term. Like in the case of Cournot competition, the absolute differences in coefficient magni-

tudes between the estimates with and without correction are smaller than with the firm-level

estimates.
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Table 15: Firm-level Gravity Estimates – Bertrand competition, σ = 5, γ = 0.

(1) (2) (3) (4)
Method PPML w/o corr PPML w/ corr OLS w/o corr OLS w/ corr
log distance -0.874*** -1.418*** -0.232*** -0.246***

(0.021 ) (0.190) (0.014) (0.014)

β̂distance 0.219 0.355 0.058 0.062
Observations 11,955,786 11,955,786 708,386 708,386
(Pseudo) R-squared 0.14 0.26 0.06 0.05
Firm-ind.-year FE YES YES YES YES
Dest.-ind.-year FE YES YES YES YES

Notes: Firm-level data, pooled across industries. Results for top 3 exporters. Bertrand model with σ = 5
and γ = 0. Standard errors in parentheses, clustered at the destination-year level. *** p < 0.01, ** p < 0.05,
* p < 0.1.

Table 16: Firm-level Gravity Estimates – Bertrand competition, σ = 4.96, γ = 0.31.

(1) (2) (3) (4)
Method PPML w/o corr PPML w/ corr OLS w/o corr OLS w/ corr
log distance -0.874*** -0.957*** -0.232*** -0.237***

(0.021) (0.040) (0.014) (0.014)

β̂distance 0.613 0.560 0.058 0.059
Observations 11,955,786 11,955,786 708,392 708,386
(Pseudo) R-squared 0.14 0.15 0.06 0.06
Firm-ind.-year FE YES YES YES YES
Dest.-ind.-year FE YES YES YES YES

Notes: Firm-level data, pooled across industries. Results for top 3 exporters. Bertrand model with mean of
estimated σ and γ. Standard errors in parentheses, clustered at the destination-year level. *** p < 0.01, **
p < 0.05, * p < 0.1.
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Table 17: Industry-level Gravity Estimates – Bertrand competition, σ = 5, γ = 0

(1) (2) (3) (4) (5) (6)
Method Heck w/o Heck w/ HMR2 w/o HMR2 w/ HMR3 w/o HMR3 w/
log distance -1.189*** -1.217*** -1.151*** -1.177*** -1.150*** -1.177***

(0.198) (0.202) (0.190) (0.194) (0.193) (0.197)
inv mills -0.121 -0.123 0.678*** 0.702*** 0.639** 0.672**

(0.165) (0.168) (0.169) (0.174) (0.309) (0.315)

log Ẑ 0.907*** 0.939*** 0.736 0.809
(0.265) (0.270) (1.305) (1.322)

log Ẑ2 -0.103* -0.108* -0.0297 -0.0513
(0.0565) (0.0575) (0.534) (0.540)

log Ẑ3 -0.0102 -0.00780
(0.0693) (0.0700)

β̂distance

Observations 60,662 60,662 60,662 60,662 60,662 60,662
R-squared 0.30 0.30 0.30 0.30 0.30 0.30
Or.-ind. FE YES YES YES YES YES YES
Dest.-ind. FE YES YES YES YES YES YES

Notes: Industry-level data. Bertrand model with σ = 5 and γ = 0. Standard errors clustered at destination
level in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table 18: Industry-level Gravity Estimates – Bertrand competition, σ = 4.96, γ = 0.31

(1) (2) (3) (4) (5) (6)
Method Heck w/o Heck w/ HMR2 w/o HMR2 w/ HMR3 w/o HMR3 w/
log distance -1.189*** -1.200*** -1.151*** -1.161*** -1.150*** -1.161***

(0.198) (0.199) (0.190) (0.192) (0.193) (0.194)
inv. Mills -0.121 -0.122 0.678*** 0.687*** 0.639** 0.652**

(0.165) (0.166) (0.169) (0.171) (0.309) (0.311)

log Ẑ 0.907*** 0.919*** 0.736 0.765
(0.265) (0.267) (1.305) (1.311)

log Ẑ2 -0.103* -0.105* -0.0297 -0.0382
(0.0565) (0.0569) (0.534) (0.536)

log Ẑ3 -0.0102 -0.00925
(0.0693) (0.0696)

β̂distance

Observations 60,662 60,662 60,662 60,662 60,662 60,662
R-squared 0.30 0.30 0.30 0.30 0.30 0.30
Or.-ind. FE YES YES YES YES YES YES
Dest.-ind. FE YES YES YES YES YES YES

Notes: Industry-level data. Bertrand model with mean of of estimated σ and γ . Standard errors clustered
at destination level in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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D Robustness Checks

Table 19: Firm-level Gravity Estimates. Robustness on Sample of Firms

(1) (2) (3) (4) (5) (6)
Sample Top 1 Top 1 Top 3 Top 3 Top 5 Top 5
Method PPML w/o PPML w/ PPML w/o PPML w/ PPML w/o PPML w/
dist., γ = 0, σ = 5 -0.978*** -1.257*** -0.874*** -1.518*** -0.793*** -1.532***

(0.018) (0.083) (0.021) (0.220) (0.021) (0.232)
dist., γ = 0.34, σ = 5.39 -0.978*** -1.148*** -0.874*** -1.201*** -0.793*** -1.139***

(0.0177) (0.0582) (0.0210) (0.118) (0.0212) (0.115)
Observations 3,690,099 3,690,099 11,955,786 11,955,786 20,265,693 20,265,693
Firm-ind.-year FE YES YES YES YES YES YES
Dest.-ind.-year FE YES YES YES YES YES YES

Notes: Firm-level data, pooled across industries. Results for top 1 exporters (columns 1-2), top 3 exporters
(columns 3-4), top 5 exporters (columns 5-6). Cournot model with σ = 5 and γ = 0. Standard errors in
parentheses, clustered at the destination-year level. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table 20: Monte Carlo: Firm-level Results. Robustness on Sample of Firms

(1) (2) (3) (4) (5) (6)
Sample Top 1 Top 1 Top 3 Top 3 Top 5 Top 5
Method PPML w/o PPML w/ PPML w/o PPML w/ PPML w/o PPML w/
dist., γ = 0, σ = 5 -1.093*** -2.480*** -0.851*** -1.403*** -0.805*** -1.421***

(0.267) (0.703) (0.135) (0.365) (0.104) (0.310)
Observations 6,340 6,340 30,198 30,198 55,680 55,680
Firm-run FE YES YES YES YES YES YES
Destination-run FE YES YES YES YES YES YES

Notes: Monte Carlo data-set, firm-level data, pooled across Monte Carlo runs. Results for top 1 exporters
(columns 1-2), top 3 exporters (columns 3-4), top 5 exporters (columns 5-6). Cournot model with σ = 5
and γ = 0. Standard errors in parentheses, clustered at the destination level. *** p < 0.01, ** p < 0.05, *
p < 0.1.
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