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Abstract

We use French data over the period 1994-2013 to study how imports of industrial

robots affect firm-level outcomes. Compared to other firms operating in the same 5-

digit sector, robot importers are larger, more productive, and employ a higher share of

managers and engineers. Over time, robot import occurs after periods of expansion in

firm size, and is followed by improvements in effi ciency and a fall in demand for labor.

Guided by a simple model, we develop various empirical strategies to identify the causal

effects of robot adoption. Our results suggest that, while demand shocks generate

a positive correlation between robot imports and employment, exogenous changes in

automation lead to job losses. We also find that robot imports increase productivity

and the employment share of high-skill professions, but have a weak effect on total sales.

The latter result suggests that productivity gains from automation may not be entirely

passed on to consumers in the form of lower prices.
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1 Introduction

Humans have always been afraid of competing against machines. Back in the 19th century,

the Luddites protested violently against automated textile equipment fearing it would destroy

their jobs. In the 1930s, John Maynard Keynes warned of the risk of “technological unem-

ployment”. Today, amid growing concerns, economists and politicians alike are discussing

the opportunity of introducing a robot tax. While changes in the production process did not

lead to mass unemployment, at least yet, stagnation in wages and productivity growth, and

soaring inequality, are fuelling the view that new technologies failed to deliver the promised

prosperity.

In this debate, the rise of industrial robots has gained special attention. Robots are

programmable machines that have the capability to move on at least three axes. As such,

robots, unlike other pieces of equipment, are designed to replicate human actions. The first

prototype, the Unimate, was introduced in 1961 at General Motors to perform basic welding

and carrying tasks. Other machines of this type were developed to assist human workers

with a wide array of tasks, including heavy lifting, as well as hazardous or repetitive work.

Yet, thanks to several recent technological advancements, today’s robots have a much higher

degree of autonomy. As a result, the adoption of these technologies has grown at a staggering

rate.1

Industrial robots are technologies adopted by firms. To understand their effect on the

economy, one must know how they affect the firms adopting them in the first place. Do robots

substitute or complement humans in firms that automate? Are the effects heterogeneous

across firms and workers? Do robots increase the productivity of firms using them? And if

so, are these productivity gains passed on to consumers or rather used to consolidate market

power? From a theoretical perspective, the answer to all these questions is ambiguous. From

an empirical perspective, unfortunately, the available evidence is worryingly limited due to

the lack of firm-level data on the use of robotics (Raj and Seamans, 2018).

This paper is one of the first attempts to fill this gap. Our main innovations are to

measure automation using detailed imports of industrial robots by French firms over the

period 1994-2013 and to use a novel identification strategy to identify causality. Recently,

researchers have turned to import data as a source of information on the usage of robots.

1By 2018, there were an estimated 2.44 million industrial robots performing a variety of tasks that humans

used to do. This number is expected to reach 4 million by 2022 and the future scale of the phenomenon is

diffi cult to predict. Frey and Osborne (2017) argue that almost half of U.S. employment is at risk of being

automated over the next two decades. See also Brynjolfsson and McAfee (2014) and Baldwin (2019).
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Although they do not include domestic purchases, robot imports are widely recognized as a

good proxy for automation because of the high concentration of this very specialized sector.

For instance, in 2017, the top six leading companies, ABB (Switzerland), Omron (US), Fanuc

(Japan), Kawasaki Robotics (Japan), KUKA (Germany) and Yaskawa (Japan) accounted for

44 percent of global revenue. Global exports are also dominated by few suppliers, with Japan

and Germany alone accounting for 50 percent of the total volume, while France’s share is

about 5 percent. Compared to other proxies used in the literature, such as dummies collected

from survey data, the key advantage of robot imports is that they provide a precise measure

of automation intensity that is available for the near universe of firms. With this rich data,

we develop various empirical strategies to identify the causal effects of robot adoption on

sales, productivity and employment within French firms.

To guide the analysis, we build a simple model in which heterogeneous firms invest in

automation, whose effect is to replace workers with capital in a set of tasks. Automation

saves on production workers, but it also requires non-production workers such as engineers

and managers. As the cost of capital declines, firms choose to invest more in automation, with

ambiguous effects on employment. On the one hand, machines displace workers; on the other

hand, the increase in productivity raises the demand for all factors. Importantly, these effects

vary across firms: since automation saves on the variable cost, firms facing a higher demand

invest more aggressively in automation and are more likely to shed workers. The model also

allows for the possibility that automation, by fostering technological lead, increases market

power. In this case, the cost savings are partly offset by an increase in markups and, besides

effi ciency considerations, firms have an incentive to invest in automation just to increase their

profits.

The model yields a number of testable predictions. First, it shows that positive demand

shocks are likely to increase employment and automation simultaneously, thereby generating

a spurious positive correlation between these variables in the data. Negative shocks to the

cost of machines, instead, trigger automation and are more likely to reduce employment,

especially in firms that are more prone to automate. The model also shows that a simple

measure of automation intensity, namely expenditure on automation over the cost of capital,

is independent of demand shocks and hence is more likely to capture the negative effect on

employment. Besides the impact on the demand for labor, automation increases productivity,

the relative demand for non-production workers and possibly markups.

We then take these predictions to the data. We start by documenting some descriptive

patterns, focusing on the manufacturing sector, where the use of industrial robots is more
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prevalent. First, we show that robot adopters differ significantly from non-adopters. In

particular, they are larger, more productive, and have a larger employment share of high-skill

professions. But do robot adopters differ from other firms before importing robots, or do they

start diverging afterwards? To shed light on this question, we use a difference-in-differences

event study approach to analyze how firm-level outcomes evolve over time for firms that start

to adopt robots relative to firms that do not. The results show that robot adoption occurs

after periods of expansion in firm size, and is followed by improvements in productivity and

labor demand shifts towards high-skill professions. However, the upward trend in employment

reverses and sales stop diverging after adoption, suggesting that workers start to be displaced

and that the productivity gains do not translate entirely into a fall in prices.

To identify the causal effects of robots, we next use two complementary strategies. First,

we exploit yearly variation within firms, and regress various outcomes on a measure of robot

intensity, which is defined as the ratio between the stock of robot imports and the total

capital stock of the firm. According to our model, this measure purges away demand shocks.

Second, we focus on long-run changes in outcomes within firms, and exploit variation in the

decision to adopt robots driven by pre-existing differences in technological characteristics,

which should determine the predisposition to automate.

In particular, we construct a novel instrument by interacting a proxy for how suitable

production is for automation in a given industry with a proxy for the ease with which robots

can replace worker activities within each firm. Consistent with our model, this instrument

captures the idea that a reduction in the cost of machines, which should be relatively larger

in industries whose production is more suitable for automation, should affect robot adoption

relatively more in firms that are more prone to automate, such as firms whose production

is more intensive in tasks that can be performed by robots. Our proxy for an industry’s

suitability for automation is the initial average robot intensity of all other firms in the same

5-digit industry. Our firm-level proxy for replaceability is instead the pre-sample share of

employment that can be replaced by robots in each firm, and is constructed by combining

the classification of tasks performed by robots in Graetz and Michaels (2018) with detailed

firm-level occupational data. Accordingly, our identification strategy exploits differential

exposure to robot adoption across firms that operate in industries with varying suitability

for automation and exhibit a heterogeneous prevalence of automatable tasks in production.

The results for employment are particularly interesting. We find that while robot adoption

and employment growth are correlated, an increase in robot intensity is followed by job losses.

Similarly, firms with initially more replaceable tasks operating in industries more suitable for
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automation experience a stronger reduction in employment than other firms. Regarding other

outcomes, we consistently find that importing robots leads to an increase in the employment

share of high-skill professions and various measures of productivity, while the effects on total

sales are much weaker.

The first-stage results also confirm the predictions of the model, thereby lending more

credibility to our identification strategy: we find that firms performing more replaceable

tasks in industries with a higher robot suitability, as well as larger firms, are more likely to

start adopting robots in subsequent years. Finally, we show that the IV results are robust to

controlling for other phenomena, such as trade and offshoring, that could have affected firms

differentially depending on the replaceability of employment.

These patterns suggest that demand shocks lead firms to both expand and automate,

resulting in a positive spurious correlation between robot adoption and employment. Once

demand shocks are neutralized, however, the relationship turns negative, confirming the hy-

pothesis that exogenous changes in automation lead to job displacement. Hence, our results

warn that caution should be exercised in interpreting the positive correlation between robot

adoption and employment often found in the literature. The weaker results on sales also

suggests that, while robot adoption increases productivity, the higher effi ciency does not nec-

essarily lead to a fall in prices. This implies that part of the gains for consumers must be

muted by an increase in markups. To our knowledge, this is the first evidence lending support

to the hypothesis that investment in robots may give firms market power. It also raises the

concern that firms may have had an incentive to choose an “excessive” level of automation

(see, for instance, Acemoglu and Restrepo, 2018a, Martinez, 2019, Korinek and Ng, 2018,

Caselli and Manning, 2019).

To our knowledge, this is the first paper that uses an IV strategy to identify the effect of

industrial robots at the firm level. In doing so, it contributes to the growing literature on the

labor market impact of automation. Several influential papers use data from the International

Federation of Robotics (IFR), which provides information on purchases of industrial robots

for a set of countries and industries. The results are mixed. Acemoglu and Restrepo (2019)

find that US commuting zones that were more exposed to robots during the period 1990—2005

experienced negative effects on employment and wages. However, in a panel of 17 countries,

Graetz and Michaels (2018) find that, while robots reduced the employment share of low-skill

workers, they only had a small effect on total employment and positive effects on productivity.

Dauth, Findeisen, Suedekum and Woessner (2018) find that robot exposure across local labor

markets in Germany led to job losses in manufacturing that were however offset by gains in
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the service sector.2

To overcome the limitations of the IFR data, some recent papers have started to focus

on imports of industrial robots. Acemoglu and Restrepo (2018b) and Blanas, Gancia and

Lee (2019) use robot imports at the country level. The former paper shows that robot

imports behave similarly to other proxies for investment in automation and uses them to

study the demand for robots; the latter finds that sectors more prone to automation in

countries importing more from leading suppliers of robots experienced a fall in demand for

low-skill, young and female workers. Firm-level robot imports have been used by Humlum

(2019) for Denmark, Dixen, Hong and Wu (2019) for Canada, and Acemoglu, Leclerc and

Restrepo (2020) for France. Importantly, none of these papers uses a firm-level instrument

to isolate the causal effect of robot adoption and, as a result, they tend to find positive

correlations with employment.

Finally, there is a growing number of papers using alternative proxies for automation at

the firm level. Some use dummies from survey data. These include Koch, Manuylov and

Smolka (2019) for Spain, Cheng et al. (2019) for China, Dinlersoz and Wolf (2018) for the

US, and a study by the European Commission (2016) for 7 European countries. They find

that robots are generally more likely to be used in larger and more productive firms, and are

associated with positive or non-negative changes in employment. Once more, these papers

document mostly conditional correlations. Positive employment effects are found by Aghion

et al. (2020), who proxy automation with investment in industrial equipment and electricity

consumption of French firms, and use a shift-share IV design to identify causality. The key

difference is that they consider a much broader measure of capital inputs, which is likely to

be complementary to labor. More in line with our findings, instead, Bessen et al. (2019) use

matched employer-employee data from the Netherlands to show that spikes in expenditure

on "third-party automation services" increase job separations.

The remainder of the paper is organized as follows. In Section 2 we build a partial

equilibrium model in which heterogeneous firms invest in automation, and we use it to derive

empirical implications. In Section 3 we discuss the French firm-level data and the main

aggregate facts regarding robot imports. In Section 4 we provide descriptive evidence on how

robot adopters differ from other firms and we study what happens after a firm in the sample

starts importing robots. In Section 5 we use various identification strategies to estimate the

2Other papers showing that alternative measures of automation leads to employment losses in some sectors

that are offset by employment gains in others include Mann and Puttman (2017) and Autor and Salomons

(2017).
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effect of robot imports on sales, employment, labor productivity, and the employment share

of high-skill workers. Section 6 concludes.

2 The Model

To guide the empirical analysis, we build a model of monopolistic competition in which

heterogeneous firms combine production workers, non-production workers and capital, to

produce differentiated goods. Firms can also invest in automation, which allows capital to

perform tasks that used to be performed by labor. The model illustrates the causes and

consequences of automation, and the main challenges when testing its empirical predictions.

It also suggests some possible identification strategies. The analysis is in partial equilibrium

and is deliberately kept as simple as possible.3

2.1 The Basic Set-Up

Consider a sector producing differentiated varieties ω with preferences over these varieties

exhibiting constant elasticity of substitution:

C =

[∫
ω∈Ω

c (ω)
σ−1
σ dω

] σ
σ−1

, σ > 1.

Firm i producing a single variety faces a demand function with a constant price elasticity σ:

yi = Aip
−σ
i , (1)

where pi is the price charged and Ai is a parameter capturing demand conditions.

To produce yi, a firm with productivity ϕi must employ capital and production workers

in a unit measure of tasks z:

yi = ϕi exp

(∫ 1

0

lnxi(z)dz
)
. (2)

Tasks z ∈ [0, κi] are automated, and hence can be performed by capital. The remaining

tasks, z ∈ (κi, 1], can only be performed by production workers. Hence, κi represents the

3The model adds firm heterogeneity to earlier contribution combing the task-based approach and en-

dogenous automation. See, for instance, Zeira (1998), Acemoglu and Autor (2011), Acemoglu and Restrepo

(2018a), Hemous and Olsen (2018), Aghion, Jones and Jones (2019), but also Acemoglu, Gancia and Zilibotti

(2015).
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extent of automation. Let (ki, li) denote the quantity of capital and labor, respectively, used

for the production of yi. Denote with ri the rental rate of capital and with w the wage of

production workers. Since in reality different production processes use very different types of

machines, we let the cost of capital equipment, ri, be firm specific. We also assume ri < w,

which will guarantee that automation raises productivity. Since machines are cheaper than

workers, there is complete specialization, in the sense that tasks z ∈ [0, κi] are performed by

machines. Hence, given symmetry we obtain:

xi(z) =

{
ki/κi for z ∈ [0, κi]

li/(1− κi) for z ∈ (κi, 1]
.

Substituting these into (2) yields:

yi = ϕi

(
ki
κi

)κi ( li
1− κi

)1−κi
. (3)

To produce, the firm must also hire f non-production workers (managers and engineers) with

wage h. For now, we take f as given, later we will assume it a function of automation, κi.

2.2 Exogenous Automation

We now solve the problem of the firm for a given level of κi. Firms are monopolistically

competitive and choose labor and capital so to maximize profit,

max
ki,li
{piyi − riki − wli − hf} ,

subject to the demand schedule (1), given the production function (3) and taking automation,

κi, as given. The first-order condition for labor is:

wli =

(
1− 1

σ

)
(1− κi) piyi. (4)

Equation (4) shows automation, κi, to have two opposite effects on the demand for labor.

First, there is a negative displacement effect, captured by (1− κi) and given by the fact that
more tasks can be performed by machines (capital). Second, as we will see shortly, there is a

positive productivity effect, since an increase in κi raises production, which in turn increases

the demand for labor.
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The first-order condition for capital is:

riki =

(
1− 1

σ

)
κipiyi. (5)

Intuitively, the demand for capital is increasing in the set of tasks it can perform. Taking the

ratio of (4) and (5), we obtain:

ki =
κi

1− κi

(
w

ri

)
li,

which shows that the capital to labor ratio is also increasing in automation, κi.

Substituting ki back into the production function yields:

yi = ϕi
li

1− κi

(
w

ri

)κi
, (6)

which shows that output per production worker is increasing in κi if w > ri, as assumed.

Intuitively, if labor is more expensive than capital, replacing workers with machines through

automation reduces the marginal cost and increases productivity. Finally, using equation (6)

into the demand for labor (4) yields:

li = w−σ
(

1− 1

σ

)σ
Aiϕ

σ−1
i

(
w

ri

)κi(σ−1)

(1− κi) . (7)

This equation shows how employment depends on κi and other exogenous parameters. It

can be used to study how the productivity effect and the displacement effect depend on the

level of κi. In the limit case of full automation (κi → 1), it is immediate to see that li → 0.

This is intuitive, since in this case workers become useless for the firm, because capital can

perform all tasks at a lower cost. Hence, the displacement effect must eventually dominate

for high levels of automation. However, at low levels of automation, the productivity effect

may dominate the displacement effect. To see this, take the derivative of (7) with respect to

κi:
dli/li
dκi

= (σ − 1) ln

(
w

ri

)
− 1

1− κi
. (8)

This derivative is positive for values of κi lower than 1− [(σ − 1) ln (w/ri)]
−1. This condition

is more likely to be satisfied when σ and w/ri are high, i.e., when the productivity effect

is strong enough. In particular, if σ is high, production can be scaled up without a large

countervailing fall in prices; and if w/ri is high, the cost saving of automation is stronger. If
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instead (σ − 1) ln (w/ri) < 1, then the displacement effect always dominates.4

Finally, using (7) into (6) we can express output as a function of automation and other

exogenous parameters:

yi = Aiϕ
σ
i w
−σ
(

1− 1

σ

)σ (
w

ri

)κiσ
. (9)

This equation confirms that automation raises output as long as capital is cheaper than

production workers, w/ri > 1. Moreover, substituting (4) and (5) into the profit function

yields

πi =
piyi
σ
− hf,

which shows the familiar result that profit is a constant share 1/σ of revenue.

2.3 Endogenous Automation

We now allow firms to choose the level of automation, κi. Substituting workers with ma-

chines requires a costly change in technology and automating more and more tasks poses an

increasingly diffi cult challenge. Hence, we assume that automation entails a cost in terms of

non-production workers (i.e., managers and engineers), which is increasing and convex in κi.

For convenience, we assume the cost hf to take the following form:

hf (κi, ρi) =
hκδi
ρiδ

, δ > 1,

where δ denotes the convexity of the automation cost. The parameter ρi captures hetero-

geneity across firms in the (inverse) cost of automation. In particular, it can interpreted as

an index of replaceability of task in the production process of firm i.

In this set-up, firms choose the level of κi that maximizes profit given the choice of factors

derived in the previous section:

max
κi

{
piyi
σ
− hκδi
ρiδ

}
.

Automation poses a trade-off between its fixed cost and the reduction in the variable cost it

generates. The first-order condition for κi is:(
1− 1

σ

)
piyi ln

(
w

ri

)
=
hκδ−1

i

ρi
. (10)

4Acemoglu and Restrepo (2018a) emphasize another possible effect, namely, that new tasks are created

when others are automated. We abstract from this additional mechanism which would reinforce the positive

productivity effect on employment.
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The left-hand side of (10) is the marginal benefit of automation. It shows that the benefit of

automation is increasing in the demand elasticity (σ), revenues (piyi) and in the cost saving

entailed by machines (w/ri). The right-hand side is instead the marginal cost.

Substituting yi from (9), the first-order condition for automation (10) becomes:

(
1− 1

σ

)σ
Ai

(ϕi
w

)(σ−1)
(
w

ri

)κi(σ−1)

ln

(
w

ri

)
=
hκδ−1

i

ρi
.

This expression shows the exogenous determinants of the marginal benefit of automation and

can be used to solve implicitly for the equilibrium level of κi. We can show that the second-

order condition is necessarily satisfied if (δ − 1) > (σ − 1) ln (w/ri) and the unique solution

is interior if:

0 < Ai

(
1− 1

σ

)σ (
ϕi
ri

)σ−1

ln

(
w

ri

)
<
h

ρi
. (11)

Clearly, if w/ri < 1 there is no benefit of automation, hence the optimal κi is zero. If instead

the cost of automation is too low, the firm will choose full automation, i.e., κi = 1. For w > ri

and a suffi ciently high cost of automation, as in (11), instead, there is an interior optimal

level of κi. As we show in the Appendix, the comparative statics of the equilibrium choice of

automation, κ∗i , to changes in the exogenous parameters are:

dκ∗i
dAi

> 0;
dκ∗i
dϕi

> 0;
dκ∗i

d(w/ri)
> 0;

dκ∗i
d(ρi/h)

> 0. (12)

These results are intuitive. Larger firms (high Ai and ϕi) have a stronger incentive to pay the

fixed automation cost to save on the variable production cost; automation is also increasing

in the cost-saving it entails (w/ri) and decreasing in its own cost h/ρi.

2.4 Extension: Automation and Market Power

We now extend the model to incorporate the notion that automation may increase market

power (e.g., Martinez, 2019, and Korinek and Ng, 2018). To keep the analysis as simple as

possible, we consider a case in which firms set their price so as to keep potential competitors

out of the market (limit pricing). Potential competitors can copy existing varieties, but they

are less productive than the original producer. To make the equilibrium markup a function

of κi, we assume that the production process of firms that use automation more intensively

is harder to imitate. As a result, the wedge between the limit price and the marginal cost

increase in κi. To capture the implications of this setup, we denote with µ (κi) ∈ (0, 1/σ) the
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profit share of revenue and assume µ′ (κi) > 0.5

Then, the labor demand in equation (7) becomes:

li = w−σ (1− µ (κi))
σ Aiϕ

σ−1
i

(
w

ri

)κi(σ−1)

(1− κi) .

This expression shows that automation affects labor demand not only via the productivity

and the displacement effects, but also through the increase in the markup, as it is made clear

by the derivative:
dli/li
dκi

= − σµ′ (κi)

1− µ (κi)
+ (σ − 1) ln

w

ri
− 1

1− κi
.

The endogenous reaction of markups dampens the productivity effect because the cost saving

generated by automation is only partially transferred to prices.

The impact of κi on markups also affects the incentives to automate. In particular, κi is

chosen to solve:

max
κi

{
µ (κi) piyi −

hκδi
ρiδ

}
.

The first-order condition for automation becomes:

(σ − 1) piyi

[
µ (κi) ln

(
w

ri

)
+

(
1

σ − 1
− µ (κi)

1− µ (κi)

)
µ′ (κi)

]
=
hκδ−1

i

ρi
. (13)

This equation shows that, as long as the markup is below the one that would be chosen without

limit pricing (µ (κi) < 1/σ), and µ′ (κi) > 0, then firms have an incentive to automate to

increase their market power. This case introduces the possibility of "excessive" automation.

For instance, if
µ′ (κi)

1− µ (κi)
= ln

(
w

ri

)
,

automation would be chosen only to increase profits, with no effect on prices and sales, and

hence no gains to consumers.

2.5 Empirical Implications

The model has clear predictions for the determinants of automation. These are summarized

by the comparative statics results in (12). In sum, automation is increasing in demand (Ai
and ϕi), in replaceability (ρi) and decreasing in the relative cost of capital (ri/w) and the cost

5The main results would be qualitatively similar if we considered other models of imperfect competition

in which the perceived demand elasiticy is a function of market shares.
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of non-production workers (h). These results are intuitive and consistent with the existing

literature.6 As to what may have caused the generalized increase in automation observed in

aggregate data, the model highlights the pervasive decline in the relative cost of capital (ri/w)

as a natural candidate. However, it also suggests that the effect should be heterogeneous.

Rearranging (10),

κi =

[(
1− 1

σ

)
piyi

ρi
h

ln

(
w

ri

)] 1
δ−1

,

it can be seen that a decline in ri/w has a stronger effect on automation in firms where tasks

are more replaceable, as captured by the parameter ρi.

The implications of the model regarding the relationship between automation and employ-

ment are more nuanced. First, (8) shows that the effect of κi on li is potentially ambiguous,

and possibly heterogeneous across firms and sectors. Hence, whether or not automation raises

employment may ultimately be an empirical question. Second, the model also illustrates the

key challenge that the econometrician faces in answering such a question, which hinges on

the endogeneity of κi: demand shocks, captured by Ai and ϕi, have a direct positive effect

on employment, but they also trigger automation. Hence, demand shocks may generate a

positive correlation between automation and employment, even if, conditional on demand,

and increase in κi would lead to job losses. Firm and sector-year fixed effects are not suffi cient

to solve the problem because demand shocks are likely to vary both across firms and over

time.7

Fortunately, the model also offers possible remedies to this bias. Exogenous shocks to

the costs and benefits of automation (ρi and ri) can be used to isolate variation in κi that is

orthogonal to demand shocks. To identify firm-specific shocks to ri, the model suggests to use

automation intensity defined as the cost of automation, hκδi/(ρiδ), over capital expenditure,

riki. Using the first-order condition for ki (5), into the first-order condition for automation

(10), we can write:
hκδi
ρiδriki

=
1

δ
ln

(
w

ri

)
. (14)

This equation shows immediately that automation intensity can be used to identify variation

in automation that is independent of demand shocks. Controlling for firm and sector-year

fixed effects should also purge this measure from any variation that is not driven by firm-

6See for instance Dechezlepretre et al. (2019), Cheng et al. (2019), Hemous and Olsen (2018), Koch,

Manuylov and Smolka (2019).
7See, for instance, Hottman, Redding and Weinstein (2016) and Bonfiglioli, Crinò and Gancia (2019) for

the importance of firm-level demand shocks.
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specific changes in the cost of capital, ri. With this new proxy for ri at hand, one can test

the prediction of the model for the effect of changes in ri on li:

d ln li

d ln r−1
i

= κi (σ − 1) +

[
(σ − 1) ln r−1

i −
1

1− κi

]
dκi

d ln r−1
i

. (15)

This equation illustrates once more the tension between the productivity effect and the dis-

placement effect. Compared to (8), equation (15) factors in the positive effect of a fall in ri
on capital, and hence captures a somewhat broader effect of automation.8

Alternatively, exogenous differences in the replaceability of tasks across firms, ρi, can

also be used to identify variation in automation that is independent of demand shocks. The

literature has shown how to build such proxies, which typically do not exhibit time varia-

tion. However, the model suggests that the decline in ri should have a stronger effect on

automation in firms with a higher ρi. Based on this insight, in the next sections, we build

an instrument for robot adoption by combining information on which industries are more

suitable for automation and firm-level measures of replaceability of employment.

What are the implications for other firm-level outcomes? Automation should clearly have

a positive correlation with measures of productivity, although causality may run in both

directions. It should also increase the demand for non-production workers. The relationship

between automation and markups, instead, is possibly ambiguous. The benefit of automation

is higher in more competitive markets. Hence, if markups are exogenous, they may exhibit

a negative correlation with automation. However, the extension with endogenous market

power has shown that, other things equal, automation may increase markups. Once again,

the latter effect can be tested exploiting exogenous variation in automation.

Finally, all these predictions have been derived in a model where the choice of automation

is continuous. In the data, however, the decision to automate is often measured by binary

variables. Nevertheless, as we show in the Appendix, a variant of the model where automation

is a discrete choice yields qualitatively similar predictions: a decline in the cost of capital

increases the probability that firms adopt a higher automation intensity and the increase in

this probability is higher if tasks are easier to replace with machines.

8If the sign of (15) is negative, the sign of (8) must be negative a fortiori.
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3 Data and Aggregate Facts

Our empirical analysis uses firm-level data for France over the 1994-2013 period and com-

bines several firm-level data sets administered by the French statistical agency (INSEE). We

observe the universe of French firms (defined as legal entities) that report a complete balance

sheet in the manufacturing, services and primary sectors (roughly 500,000 firms per year), ex-

cluding the government sector. Each firm is uniquely defined by a firm-level identifier (SIREN

number) common across all data sets. For each firm that reports a complete balance sheet, we

have data on sales, material purchases, capital stock (value of physical assets) in Euros and

total employment.9 We use this information to compute firm-level value added10 and revenue

TFP. We compute revenue TFP from a Cobb-Douglas value-added production function with

labor and physical capital as inputs and output elasticities of inputs that vary at the 2-digit

NACE level. We use the Wooldridge (2009) estimator for estimating the production-function

coeffi cients11

The balance sheet data are complemented with information on the occupational struc-

ture of employment from DADS Etablissement. For each sample year, DADS Etablissement

contains plant-level employment data disaggregated in five two-digit occupations: (1) firm

owners receiving a wage; (2) high-skill professions (i.e., scientists, managers and engineers);

(3) intermediate-skill professions (e.g., teachers, administrative assistants and technicians);

(4) low-skill white-collar workers; and (5) blue-collar workers. We aggregate the occupational

employment data from DADS across all plants belonging to the same firm using the SIREN

identifier, thereby obtaining the occupational structure of employment for each firm in a given

year. For the year 1994, DADS contains more disaggregated information on employment for

29 occupations. We use this information to construct a firm-level proxy for the extent to

which employment is replaceable by robots, as explained below. For the descriptive analysis,

9For the years 1994 to 2009 the source of this information is BRN. For 2011-2013 the data source is

FARE, which substitutes BRN and is more comprehensive in terms of coverage. This dataset is prepared by

INSEE and combines administrative data with survey information and also uses imputation. Compared to

BRN, it additionally includes firms that do not report a full balance sheet. We use the subset of FARE that

is consistent in terms of sample with BRN.
10Value added is computed as sales minus changes in inventories minus purchases of final goods minus

purchases of materials plus changes in material inventories minus other purchases.
11The Wooldrige estimator is based on the Levinsohn-Petrin (2003) methodology but uses a one-step GMM

estimator instead of a two-step approach. This estimator solves the problem that the labor coeffi cient may

be unidentified in the first stage if labor is freely adjustable (see Ackerberg, Caves and Frazer, 2015). We

consider labor endogenous and use lagged labor as an instrument variable.
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we use the full set of years (1994-2013), while for the Instrumental Variables (IV) regressions

we focus on the 1996-2013 period and use 1994 as a pre-sample year. Finally, for each firm and

year, we also have customs data on exports and imports from the French customs authority

(DOUANE). In particular, we observe quantities and values of imports and exports for all

8-digit products of the Combined Nomenclature (CN) classification by origin and destination

country.

We leverage the detailed information on firm-level imports by product to proxy for the

use of robots at the firm level. The CN classification classifies trade of industrial robots into

a specific product code, CN 84795000 (CN 84798950 before 1996). Accordingly, we identify

firms that import robots in a given year as firms with positive imports for this product code

in that year. In the empirical analysis, we use this information to build a proxy for the

adoption of foreign robots by each firm. We also measure the stock of robot capital employed

by a firm at a given point in time as the cumulative sum of robot imports by the firm up to

that point. Using this information, we build a second proxy for automation measuring the

intensity with which the firm uses robots.12

Figure 1 plots the time series of total robot imports into France obtained by summing

robot imports across all firms in our sample (hollow circles). For comparison, the figure

also plots the time series of total French robot imports obtained from the Comext database

(full circles). Our firm-level data follow quite closely the evolution of aggregate French robot

imports implied by offi cial statistics, and account for the majority of these imports in any

given year. Interestingly, robot imports appear to be quite volatile, consistent with the lumpy

nature of this investment.

Figure 2 shows the cumulative number of robot importers and the stock of imported robot

capital over time. Both variables have rapidly trended upward. In particular, the number

of firms with at least one year of robot imports rose from 121 in 1994 to more than 1700 in

2013. Similarly, the stock of imported robot capital increased from 63 million Euros in 1994

to around 1,8 billion Euros in 2013. Overall, these numbers suggest that automation has

become increasingly widespread across French firms over the sample period.

Finally, Figure 3 reports the cumulative number of robot importers by two-digit sector.

The figure shows that, while robot importers are observed in many different sectors, they

are particularly frequent in manufacturing, especially in industries such as production of

12All our findings are qualitatively similar when computing the stock of robot capital using a perpetual

inventory method with an annual depreciation rate of 15%, which falls within the range of depreciation rates

normally assumed for robots in manufacturing (see, e.g., Graetz and Michaels, 2018).
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Figure 1 - Robots Import, 1994-2013
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Figure 1: Robot Import, 1994-2013

motor vehicles, machinery, and electrical equipment. Consistent with this evidence, in our

econometric analysis we use a baseline sample consisting of manufacturing firms only. Overall,

there are more than 800 different manufacturing firms importing robots at least once over the

period of analysis. We further focus on firms with more than ten employees given that robots

are typically used at relatively large firms and adoption decisions by small firms tend to be

more noisy and lumpy. However, the qualitative pattern of our results is largely insensitive

to the choice of the estimation sample.

4 Preliminary Evidence

We start by providing descriptive evidence on how firms that adopt robots compare to firms

that do not in terms of various characteristics. Table ?? reports summary statistics on a

number of firm-level variables, separately for firms that have imported robots at least once

over 1994-2013 ("robot adopters") and for firms that have never imported robots over this

period ("non robot adopters"). Our sample consists of 64,760 manufacturing firms. Of these,

746 are robot adopters, corresponding to 1.15 percent of all firms and 0.96 percent of all firm-
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Figure 2 - Cumulative Number of French Robot Importers and Value of Robot Imports over Time

Figure 2: Cumulated Robot Importers and Import
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Figure 3 - Cumulative Number of French Robot Importers by Sector (1994-2013)
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Figure 3: Cumulative number of robot importers by two-digit industry

year observations in our data set.13 Robot intensity, defined as the ratio between the stock of

robot capital and the total physical capital stock of the firm, equals 11 percent on average for

robot adopters. The average robot adopter is around 11 times larger than the average non

robot adopter in terms of employment and around 14 times larger in terms of sales. Robot

adopters also exhibit around 3 times higher levels of sales per worker and around 1.5 times

higher levels of Total Factor Productivity, on average. The skill composition of employment

also differs across robot adopters and non robot adopters, the share of employment in high-

skill professions being twice as high on average in the former group of firms than in the

latter. Robot adopters are also more likely to import and export goods other than robots,

and are characterized by a larger share of employment performing tasks that can be replaced

13The relatively low number of firms adopting industrial robots is consistent with other existing studies.

For instance, Acemoglu, Lelarge and Restrepo (2020), who collected information on robot adoption in France

from multiple sources, find that only 1% of the firms in their sample purchased robots over the 2010-2015

period. While robot adopters are a minority, they nevertheless account for a large fraction of employment

and sales.

18



by robots.14

Table 1 also reports the average annualized change in each variable over 1994-2013, sepa-

rately for the two sets of firms. Robot adopters have increased robot intensity at an average

rate of 0.2 log points per year. While employment has decreased in both groups of firms,

robot adopters have shed workers at a slower rate than non robot adopters (0.02 vs. 0.03 log

points per year, respectively).15 Robot adopters have also experienced a relatively slower re-

duction in sales, sales per worker and TFP, and a relatively faster increase in the employment

share of high-skill professions.

To further shed light on the differences between the two groups of firms, we now estimate

conditional correlations between robot adoption and firm-level characteristics, by running

OLS regressions of the following form:

Yijt = αi + αjt + β ·Rob_Adoptionijt +X′ijt · γ + εijt, (16)

where i denotes a firm, j indicates the 5-digit NACE industry in which the firm operates,

and t stands for time. Yijt is an outcome and Rob_Adoptionijt a dummy that takes on value

1 in the first year in which the firm imports robots and in all subsequent periods, and is

equal to 0 otherwise. We estimate two versions of eq. (16). In the first version, we control

for firm fixed effects, αi, and for 5-digit industry×year fixed effects, αjt. The "robot adopter
premia", β, are then identified by comparing outcomes, in deviations from within-firm means,

across firms belonging to the same 5-digit industry and year. This approach ensures that the

coeffi cients β are not contaminated either by time-invariant firm characteristics that could

be correlated with adoption and outcomes or by differences in the distribution of adopters

and non adopters across industries. In the second version of eq. (16), we add controls for

observable firm characteristics (log sales and dummies for exporter and importer status).

We measure each characteristic at baseline, that is, in the first year in which the firm is

observed in the sample, and interact its first-year value with a full set of year dummies. The

resulting interactions, contained in the vector Xijt, flexibly control for heterogeneous trends

across firms characterized by different initial conditions. We correct the standard errors for

clustering at the firm level to account for serially correlated shocks within firms.

The results are reported in Table 2. Odd-numbered columns show the estimates of the

14The replaceability of tasks by robots is constructed following Graetz and Michaels (2018) and is explained

in details below. This variable refers to the year 1994 and is computed for the 36,972 firms used in the IV

regressions.
15Manufacturing employment declined significantly in France during the sample period.
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Table 1: Descriptive Statistics

Obs. No. Firms Mean Median Std. Dev. ean 
(annualized)

Robot adopter 6,003 746 1 1 1 0
Robot intensity 6,003 746 0.108 0.005 0.635 0.190
No. of employees 6,003 746 838 184 3,107 -0.017
Empl. sh. high skill 6,003 746 0.157 0.111 0.142 0.006
Sales (€'000) 6,003 746 758,388 42,911 6,965,072 -0.073
Sales per worker (€'000) 6,003 746 2,002 221 108,120 -0.058
VA per worker (€'000) 5,855 742 183 164 2,802 -0.069
TFP 5,848 741 422 164 2,702 -0.066
Importer 6,003 746 0.973 1 0.163 0.001
Exporter 6,003 746 0.950 1 0.218 0.002
Replaceability 513 513 0.372 0.403 0.185 -

Robot adopter 616,798 64,014 0 0 0 0
Robot intensity 604,409 64,014 0 0 0 0
No. of employees 616,798 64,014 77 27 309.54 -0.029
Empl. sh. high skill 616,798 64,014 0.082 0.056 0.107 0.003
Sales (€'000) 616,794 64,014 53,465 7,385 673,610 -0.091
Sales per worker (€'000) 616,794 64,014 653 223 11,554 -0.063
VA per worker (€'000) 604,960 63,307 187 69 1,945 -0.066
TFP 593,795 62,571 287 128 1,343 -0.071
Importer 616,798 64,014 0.560 1 0.4963 0.001
Exporter 616,798 64,014 0.554 1 0.4971 0.004
Replaceability 36,459 36,459 0.356 0.358 0.190 -

Robot Adopters

Non Robot Adopters

The whole sample consists of all manufacturing firms with more than 10 employees (64,760 firms). Robot adopter is
a dummy taking on value 1 since the first year in which a firm imports robots. Robot intensity is the ratio between
the stock of robot capital and the total capital stock of the firm; the stock of robot capital is constructed as the
cumulative sum of robot imports. Importer and Exporter are dummies taking on value 1 if the firm imports (resp.
exports) in a given year and 0 otherwise. Replaceability is the share of firm employment in occupations that can be
replaced by robots. All statistics are computed on firm-level observations for the 1994-2013 period, except for
Replaceability, which is observed in 1994 and is computed for 36,972 firms used in the instrumental variables
regressions. Changes are computed as annualized log differences, except for Employment sh. high skill, Exporter and
Importer, for which we report annualized changes in levels.
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Table 2: Firm-Level Outcomes and Robot Adoption, Panel (OLS)

(1) (2) (3) (4) (5) (6)

Rob_Adoption 0.130*** 0.198*** 0.093*** 0.114*** 0.039*** 0.087***
[6.113] [9.546] [4.622] [5.664] [2.614] [5.797]

Obs. 615,785 614,427 617,229 615,595 615,785 614,427
R2 0.949 0.95 0.878 0.878 0.89 0.891

Rob_Adoption 0.011 0.051*** 0.030** 0.067*** 0.011*** 0.003
[0.707] [3.155] [2.042] [4.492] [4.195] [0.973]

Obs. 605,217 603,926 593,996 592,746 617,229 615,595
R2 0.815 0.815 0.857 0.858 0.677 0.679

Firm FE Yes Yes Yes Yes Yes Yes
Industry ×year FE Yes Yes Yes Yes Yes Yes
Controls No Yes No Yes No Yes

ln Sales ln  Employment ln Sales per Worker

Empl. Sh. High Skillln VA per Worker ln TFP

The dependent variables are annual observations of the firm-level outcomes indicated in columns'
headings. Rob_Adoption is a dummy equal to 1 for all years since the firm starts importing robots, and
equal to 0 otherwise. Industry refers to 5-digit industries. The control variables included in columns (2)
and (4) are log sales and dummies for whether the firm is an importer or an exporter, observed in the
first year in which the firm appears in the sample and interacted with a full set of year dummies.
Standard errors are clustered at the firm level, t-statistics are reported in square brackets. ***, **, *:
denote significance at the 1, 5 and 10% level, respectively.
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specification including only firm and industry×year fixed effects. Even-numbered columns
report the results obtained by adding interactions between year dummies and the initial-

period value of three firm characteristics: log sales and indicators for importing and exporting

firms. Both specifications are estimated for six major outcomes on which we focus throughout

the paper: (i) log sales, (ii) log employment, (iii) log sales per worker, (iv) log value added per

worker, (v) log TFP, and (vi) the employment share of high-skill professions. All estimates of

β are positive and, except for two cases, they are also highly statistically significant. These

results confirm that robot adopters are larger, more productive and more skill-intensive than

non robot adopters, even when accounting for time-invariant firm characteristics, firm-specific

trends and the industry of operation.

The differences between robot adopters and non robot adopters just documented may have

two interpretations: either robot adopters differ from other firms before adopting robots, or

they start diverging afterward. To shed light on this question, we now use a difference-in-

differences event study approach to analyze how the six outcomes evolve over time in firms

that adopt robots relative to firms that do not. To this purpose, we extend eq. (16) by

adding the first five lags and leads of Rob_Adoptionijt:

Yijt = αi + αjt +
5∑

s=−5

βs ·Rob_Adoptionijt−s + εijt. (17)

The coeffi cients βs estimated from eq. (17) illustrate how a given outcome evolves over time

within robot adopters relative to non robot adopters, over a ten-year window around the first

instance of robot imports. As before, we correct the standard errors for clustering at the firm

level.

The results are reported in Figure 4, where each graph refers to a different outcome. Note

that robot adoption is antedated by significant differences in the trends of sales and em-

ployment between robot adopters and non robot adopters. In particular, the former group of

firms grow faster than the latter in terms of both variables over the five-year period preceding

adoption. Conversely, no clear differential pre-trend is detected in terms of effi ciency and the

skill composition of the workforce. After adoption, the diverging trends in employment is

reversed: while robot adopters still grow faster than non robot adopters, the differential grad-

ually vanishes. Robot adopters also experience a more marked shift in the skill composition

of the workforce toward high-skill professions, and a faster increase in effi ciency, which takes

approximately two years to unfold. No differential trend is instead observed in terms of sales

after adoption, which suggests that the effi ciency gains from robot adoption do not translate
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into lower prices. Overall, these results suggest that robot adoption occurs after periods of

expansion in firm size, and is followed by employment losses, improvements in firm effi ciency,

labor demand shifts toward high-skill workers and, possibly, increases in firm markups.

5 Identifying the Effects of Robots on Firm-Level Outcomes

Both our theoretical model and the preliminary evidence suggest that the correlations between

robot adoption and other firm-level characteristics may be confounded by demand shocks,

which are likely to influence both the outcomes of a firm and its choice to automate. In this

section, we use two complementary strategies to purge away demand shocks and identify the

effects of robots. First, we exploit yearly within-firm variation and regress outcomes on robot

intensity, a variable that should not be influenced by demand shocks according to our model

(Section 5.1). Second, we focus on long-run changes in outcomes within firms, and exploit

variation in the decision to adopt robots as driven by pre-existing differences in technological

characteristics determining the predisposition to automate (Section 5.2).

5.1 Robot Intensity

In our first approach, we re-estimate eq. (16) replacing the dummy Rob_Adoptionijt with

our proxy for the intensity with which a firm uses robots, lnRob_Intensityijt, defined as

the log ratio between the stock of robot capital and the total capital stock of the firm. This

variable is the empirical counterpart of the theoretical measure introduced in eq. (14). By

scaling robot capital with the total capital stock of the firm, lnRob_Intensityijt neutralizes

demand shocks, as the latter should affect both the numerator and the denominator of the

ratio. The log transformation implies that lnRob_Intensityijt is defined only for firms that

import robots. Because the specification controls for firm and 5-digit industry×year fixed
effects, the coeffi cients β are identified from changes in robot intensity over time within robot

adopters, controlling for common shocks hitting all firms in a narrow sector.

The results are reported in Table 3. Odd-numbered columns refer to the specification that

only controls for firm and industry-year fixed effects, while even-numbered columns refer to

the specification that also includes the interactions of the year dummies with initial firm size

and indicators for the initial import and export status of the firm. Compared to the results

reported in Table 2, the estimate of β switches from positive to negative in the regressions

for sales and employment, and is highly statistically significant. This pattern suggests that

demand shocks lead firms to both expand and automate, resulting in a spurious positive
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Ln VA per Worker Ln TFP

Ln Sales Ln Employment

Ln Sales per Worker Empl. Sh. High Skill

Figure 4: Evolution of Outcomes across Robot Importers and Non-Importers
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Table 3: Firm-Level Outcomes and Ln Robot Intensity, Panel (OLS)

(1) (2) (3) (4) (5) (6)

Ln Rob_Intensity -0.141*** -0.138*** -0.191*** -0.186*** 0.033* 0.029
[-4.396] [-4.253] [-5.882] [-5.661] [1.861] [1.589]

Obs. 5,998 5,948 6,003 5,953 5,998 5,948
R2 0.982 0.982 0.955 0.956 0.885 0.886

Ln Rob_Intensity 0.052*** 0.056*** 0.026* 0.032** 0.018*** 0.018***
[3.074] [3.265] [1.668] [2.119] [2.936] [2.708]

Obs. 5,823 5,773 5,817 5,767 6,003 5,953
R2 0.795 0.798 0.883 0.885 0.876 0.877

Firm FE Yes Yes Yes Yes Yes Yes
Industry ×year FE Yes Yes Yes Yes Yes Yes
Controls No Yes No Yes No Yes

ln Sales ln Employment ln Sales per Worker

Empl. Sh. High Skillln VA per Worker Ln TFP

The dependent variables are annual observations of the firm-level outcomes indicated in columns'
headings. Ln Rob_Intensity is the log ratio between the cumulative stock of robot capital and the total
capital stock of the firm. Industry refers to 5-digit industries. The control variables included in columns
(2) and (4) are log sales and dummies for whether the firm is an importer or an exporter, observed in the
first year in which the firm appears in the sample and interacted with a full set of year dummies.
Standard errors are clustered at the firm level, t-statistics are reported in squared brackets. ***, **, *:
denote significance at the 1, 5 and 10% level, respectively.

correlation between robot adoption and firm size. That the relation between robot adoption

and employment turns negative once demand shocks are neutralized is consistent with the

idea that automation leads to job displacement. In terms of magnitude, multiplying the

coeffi cient on lnRob_Intensityijt in the employment regression by the average annual change

in robot intensity reported in Table 1 (0.2 log points) implies that the observed increase in

robot intensity explains an average fall in employment equal to 3.5 percent per year among

robot adopters. Regarding the other outcomes, Table 3 continues to show positive estimates

of β across the board. While some of these coeffi cients are only marginally significant, the

qualitative pattern of results suggests that robots tend to improve firm effi ciency and to shift

labor demand in favor of high-skill workers.

5.2 Instrumental Variables

Our second approach to identify the effects of automation on firm-level outcomes consists

of using IV to isolate the variation in robot adoption that is not contaminated by demand

shocks. To operationalize this approach, we estimate long-difference specifications of the
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following form:

∆Yij = αs + β ·∆Rob_Adoptionij +X′ij · γ + ∆εij, (18)

where i indexes firms and j denotes 5-digit industries; ∆Yij is the annualized change in

outcome Y for firm i between the first and the last year in which the firm is present in the

sample; ∆Rob_Adoptionij takes on value 1 if firm i has adopted robots over the sample

period, and is equal to 0 both for non-adopters and for firms that were already using robots

initially; Xij are start-of-period values of control variables (described below); and αs are

fixed effects for 3-digit sectors.16 By eliminating year-on-year variation, the use of long

differences implies that the coeffi cient β is identified from cross-sectional differences in the

growth of outcomes between robot adopters and other firms. The sector fixed effects, αs,

absorb differential trends in adoption and outcomes across sectors, while the covariates, Xij,

remove heterogeneous trends across firms characterized by different initial conditions within

the same sector.

Demand shocks could bias the OLS estimate of β from eq. (18) if they both induced firms

to adopt robots and influenced the outcomes. Hence, we instrument ∆Rob_Adoptionij using

a variable that is meant to eliminate the effect of demand shocks by isolating the variation in

adoption occurring for technological reasons. Because most of the variation in robot adoption

is across firms, finding a strong instrument for ∆Rob_Adoptionij in the context of eq. (18) is

easier than explaining the exogenous within-firm variation in Rob_Adoptionijt in the context

of eq. (16).

To construct the instrument, we follow the insights of our theoretical model. The latter

shows that a reduction in the cost of machines should affect robot adoption relatively more

in firms that are more prone to automate. To capture this idea, we exploit the fact that

the different nature of the production process across industries makes production easier to

automatize in some industries than in others, implying that the cost of automation should

fall relatively more over time in the former industries. At the same time, within a given

industry, some firms are more prone than others to automatize production, because they

perform activities that are relatively easier to assign to robots. Accordingly, our instrument,

labeled Rob_Exposureij, is obtained by interacting a proxy for how suitable production is

for automation in a given industry, Rob_Suitabilityij, with a proxy for the ease with which

robots can replace worker activities within a given firm, Replaceabilityij.

For each firm i, Rob_Suitabilityij is defined as the average robot intensity of all firms

16Given the significant reduction in degrees of freedom due to the use of long differences, in this specification

we define the industry fixed effects at the slightly more aggregated 3-digit level.
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i′ 6= i in the same 5-digit industry j in the initial year, and is constructed as follows:

Rob_Suitabilityij = ln
1 +

∑
i′ 6=i∈j Rob_Stocki′j∑

i′ 6=i∈j Cap_Stocki′j
,

where Rob_Stocki′j and Cap_Stocki′j denote, respectively, the initial stock of robots and

the initial total capital stock of firm i′ 6= i ∈ j. Industries in which this ratio is higher should
be relatively more suitable for automation and should thus experience a relatively larger fall

in the cost of robots in subsequent years.

As for Replaceabilityij, we follow Graetz and Michaels (2018) and exploit differences

across firms in the prevalence of tasks that can be assigned to robots. Our measure is similar

to the Graetz and Michaels (2018) indicator but is defined at the firm-level rather than at the

industry level. To build it, we start by sourcing from Graetz and Michaels (2018) information

on whether each of 377 US Census occupations is replaceable or not. The authors define an

occupation as replaceable if its title corresponds to at least one of the robot application

categories identified by the International Federation of Robotics, such as welding, painting

and assembling.17 Then, we manually map each US Census occupation into the 29 French

occupations for which we have employment data in 1994. With this information in hand, we

construct the firm-level replaceability measure as follows:

Replaceabilityij =
29∑
o=1

ωoij ×Replaceabilityo,

where Replaceabilityo is the replaceability of French occupation o and ωoij is the share of

occupation o in firm i’s employment in 1994.

The instrument, Rob_Exposureij, is finally obtained as

Rob_Exposureij = Rob_Suitabilityij ×Replaceabilityij.

Accordingly, our instrument captures variation in robot exposure across firms that operate

in industries with different suitability for automation and exhibit a different prevalence of

automatable tasks in production.

To be a valid instrument for ∆Rob_Adoptionij, Rob_Exposureij must be uncorrelated

17Previous studies have investigated the effect of new technologies on occupations involving routine tasks

(e.g., Autor, Levy, and Murnane, 2003). However, Cheng et al. (2019) find that robots are more prevalent

at firms where employees are commonly doing manual tasks, but not those that require routine tasks.
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Table 4: Firm-Level Outcomes and Robot Adoption, Long Differences (OLS)

(1) (2) (3) (4) (5) (6)

Rob_Adoption 0.025*** 0.023*** 0.021*** 0.044*** 0.043*** 0.021***
[6.450] [7.145] [6.490] [10.565] [10.570] [4.572]

Obs. 36,666 36,950 36,972 36,666 36,666 36,666
R2 0.057 0.032 0.030 0.075 0.075 0.055

Rob_Adoption 0.001 0.017*** 0.005 0.019*** 0.001*** 0.000
[0.190] [4.091] [1.350] [5.277] [3.250] [0.303]

Obs. 35,534 35,534 33,964 33,964 36,972 36,950
R2 0.029 0.043 0.036 0.050 0.020 0.032

Controls Industry FE All Controls Industry FE All Controls Industry FE All Controls

 ln TFP

 ln Sales  ln Employment

 ln VA per Worker

 ln Sales per Worker

 Empl. Sh. High Skill

The dependent variables are the annualized changes in the firm-level outcomes indicated in columns'
headings.  Rob_Adoption is a dummy equal to 1 for firms that start importing robots over the sample
period and equal to 0 for non-importers. Industry fixed effects are dummies for 3-digit industries. The
control variables included in columns (2) and (4) are the employment share of occupations that can be
replaced by robots in 1994 (Replaceability), the log ratio between the overall stock of robots and the total
capital stock of all other firms in each 5-digit industry in 1994 (Rob_Suitability), and the initial values of log
sales and of dummies for importing and exporting firms. Standard errors clustered at the 5-digit industry
level, t-statistics are reported in squared brackets. ***, **, *: denote significance at the 1, 5 and 10% level,
respectively.

with ∆εij in eq. (18) conditional on the covariates. In this respect, the sector fixed effects αs
remove sector characteristics that could be correlated with Rob_Exposureij and affect the

evolution of outcomes across all firms in a sector. Moreover, we control for the start-of-period

values of log firm sales and of indicators for exporting and importing firms, included in the

vector Xij along with Rob_Suitabilityij and Replaceabilityij. These predetermined firm-

level controls account for the fact that, within a given sector, larger and more trade-oriented

firms may be more prone to adopt robots and may systematically follow different paths

in terms of key outcomes. Then, our identification strategy exploits differential exposure

to robot adoption across firms and 5-digit industries within 3-digit sectors: firms that are

most exposed to robots in a sector are those with high levels of Replaceabilityij operating in

industries with high levels of Rob_Suitabilityij.

Table 4 reports the OLS estimates of eq. (18), together with standard errors corrected

for clustering within 5-digit industries. As indicated in the columns’headings, the dependent

variables are the log changes in sales, employment, sales per worker, value added per worker

and TFP, and the change in the employment share of high-skill professions.18 For each

18We winsorize the change in each outcome at the top and bottom 5 percent of the distribution to prevent
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Table 5: Firm-Level Outcomes and Robot Adoption, Long Differences (IV)
(1) (2) (3) (4) (5) (6) (7)
 Rob_Adoption  ln Sales  ln Employment ln Sales per 

Worker
ln VA per 
Worker

 ln TFP  Empl. Sh. 
High Skill

Rob_Adoption 0.192 -0.557** 1.019** 1.188* 0.816 0.047**
[0.422] [-2.006] [2.100] [1.864] [1.521] [2.024]

Rob_Exposure 0.002***
[2.898]

Replaceability 0.033*** -0.021*** -0.021*** 0.002 -0.005 -0.013** -0.003***
[2.657] [-3.423] [-6.324] [0.291] [-0.666] [-2.102] [-7.431]

Rob_Suitability 0.344** 0.196 -0.085 0.289 0.244 0.113 0.085**
[2.334] [0.504] [-0.308] [0.743] [0.516] [0.253] [2.407]

ln Initial Sales 0.013*** -0.017*** 0.007** -0.027*** -0.029*** -0.023*** 0.000
[7.308] [-2.665] [2.111] [-4.458] [-3.764] [-3.260] [0.272]

Dummy Initial Importer 0.000 0.015*** 0.001 0.014*** 0.015*** 0.014*** 0.001**
[0.127] [6.561] [0.787] [5.704] [5.365] [6.172] [2.380]

Dummy Initial Exporter 0.001 0.006*** -0.004*** 0.011*** 0.009*** 0.008*** 0.001***
[0.724] [3.124] [-2.762] [4.557] [3.605] [4.001] [3.610]

Obs. 36,950 36,666 36,950 36,666 35,534 33,964 36,950
KP F-Statistic 8.745 8.399 8.745 7.370 7.081 8.399
The dependent variables are indicated in columns' headings and are:  Rob_Adoption, a dummy equal to 1 for firms that start importing
robots over the sample period and equal to 0 for non-importers (column 1); the annualized changes in log sales (column 2), log
employment (column 3), log sales per worker (column 4), log value added per worker (column 5), log TFP (column 6) and the
employment share of high-skill professions (column 7). Rob_Exposure is the product between the firm-level employment share of
occupations that can be replaced by robots in 1994 (Replaceability) and the log ratio between the overall stock of robots and the total
capital stock of all other firms in each 5-digit industry in 1994 (Rob_Suitability). All regressions also include 3-digit industry fixed effects.
Standard errors are clustered at 5-digit industry level, t-statistics are reported in squared brackets. ***, **, *: denote significance at the 1, 5
and 10% level, respectively.

outcome, the table presents results from a specification including only the industry fixed

effects (odd-numbered columns) and from the complete specification including also the control

variables (even-numbered columns). Consistent with the findings presented in the previous

section, Table 4 shows that firms that adopt robots over the sample period experience a

relatively larger increase in size, a relatively stronger improvement in effi ciency and a relatively

faster shift in labor demand toward high-skill workers.

The IV estimates of eq. (18) are reported in Table 5. Column (1) shows the first-

stage results. The coeffi cient on the instrument Rob_Exposureij is positive and statistically

significant: firms that are more exposed to robots due to pre-existing technological char-

acteristics do indeed show a greater tendency to adopt robots in subsequent years. As for

the other regressors, the positive and precisely estimated coeffi cients on Replaceabilityij and

Rob_Suitabilityij imply that robot adoption is relatively higher in firms that perform more

automatable tasks in the pre-sample period and in industries in which production is more

suitable for automation. ∆Rob_Adoptionij is also positively correlated with initial firm sales.

results from being driven by extreme observations.
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As predicted by the model, this result implies that initially larger firms tend to adopt more

robots in the future, and highlights the importance of controlling for size in eq. (18) to

eliminate a potential source of correlation between Rob_Exposureij and ∆εij.

The second-stage estimates of β are reported in columns (2)-(5) of Table 5. Each col-

umn refers to a different outcome, as indicated in the column’s heading. The corresponding

reduced-form coeffi cients, obtained by regressing each outcome on Rob_Exposureij and the

full set of fixed effects and controls, are reported in panel a) of Table 6. In the regres-

sion for the log change in employment, the reduced-form coeffi cient on Rob_Exposureij is

equal to −0.001 and is very precisely estimated. This implies that firms that are more ex-

posed to robots, owing to the interplay between their industry’s initial suitability for automa-

tion and their pre-sample specialization in automatable tasks, experience a relatively larger

reduction in employment over the sample period. Taking the ratio between the reduced-

form and the first-stage coeffi cient on Rob_Exposureij yields the second-stage coeffi cient on

∆Rob_Adoptionij. The latter is equal to −0.557 and is precisely estimated, implying that

exogenous robot adoption leads firms to shed workers.

By comparing the OLS and second-stage coeffi cients on ∆Rob_Adoptionij, we can have

a sense of how much of the correlation between robot adoption and employment changes

is due to exogenous automation and how much reflects instead demand shocks. Following

Autor, Dorn and Hanson (2013), the OLS coeffi cient on ∆Rob_Adoptionij, βOLS, can be

decomposed as follows:

βOLS = βIV ×
σ2
IV

σ2
+ βRES ×

σ2
RES

σ2
,

where βIV is the second-stage coeffi cient on ∆Rob_Adoptionij, (σ2
IV /σ

2) is the fraction of

the overall variance of ∆Rob_Adoptionij explained by the fitted values of the first-stage

regression (exogenous adoption), and (σ2
RES/σ

2) is the residual fraction explained by demand

shocks (endogenous adoption). We estimate (σ2
IV /σ

2) to be equal to 4.3 percent in our data,

implying that for most firms (95.7 percent) robot adoption results from demand shocks.

Using these numbers along with the estimates of βOLS and βIV reported in Tables 4 and

5, respectively, yields βRES = 0.049. Accordingly, exogenous adoption explains an average

annual fall in employment equal to 2.4 percentage points in robot adopters relative to non

robot adopters (i.e., βIV × (σ2
IV /σ

2)). Residual adoption due to demand shocks is instead

associated with an average annual increase in employment equal to 4.7 percentage points in

the former group of firms relative to the latter (i.e., βRES × (σ2
RES/σ

2)).

Turning to the other outcomes, Table 5 exhibits positive and statistically significant coeffi -

cients on ∆Rob_Adoptionij in the regressions for log sales per worker and log value added per
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Table 6: Firm-Level Outcomes and Robot Adoption, Long Differences (IV and RF)

(1) (2) (3) (4) (5) (6)
 ln Sales  ln Employment ln Sales per 

Worker
 ln VA per 
Worker

 ln TFP  Empl. Sh. 
High Skill

Rob_Exposure 0.0003 -0.001*** 0.001** 0.002** 0.001* 0.0001**
[0.411] [-2.733] [2.561] [2.268] [1.687] [2.256]

Obs. 36,666 36,950 36,950 35,534 33,964 36,950
R2 0.074 0.032 0.033 0.043 0.050 0.033

Rob_Adoption 0.380 -0.824** 1.528** 1.719** 1.250* 0.080**
[0.641] [-2.293] [2.289] [2.221] [1.958] [2.264]

Obs. 36,903 36,903 36,903 36,903 36,903 36,903
KP F-Statistic 7,333 7,333 7,333 7,333 7,333 7,333

Rob_Exposure 0.001 -0.001*** 0.002** 0.002** 0.002** 0.0001***
[-0.619] [-3.226] [1.788] [2.696] [2.153] [3.320]

Obs. 36,903 36,903 36,903 36,903 36,903 36,903
R2 0.076 0.033 0.076 0.038 0.050 0.034
The dependent variables are the annualized changes in the firm-level outcomes indicated in columns' headings.
 Rob_Adoption is a dummy equal to 1 for firms that start importing robots over the sample period and equal
to 0 for non-importers. Rob_Exposure is the product between the firm-level employment share of occupations
that can be replaced by robots in 1994 (Replaceability) and the log ratio between the overall stock of robots and
the total capital stock of all other firms in each 5-digit industry in 1994 (Rob_Suitability). Coefficients in panels
a) and c) are estimated with OLS. Coefficients in panel b) are estimated with IV as in Table 5. Panels b) and c)
also control for the initial values of: sectoral exports; sectoral imports; sectoral export unit value; and sectoral
import unit value. These controls enter both lineraly and interacted with Replaceability. All specifications
include 3-digit industry fixed effects. Standard errors are clustered by industry at 5-digit level, t-statistics are
reported in squared brackets. ***, **, *: denote significance at the 1, 5 and 10% level, respectively.

a) Reduced Form (RF)

b) Additional Interactions of Replaceability, IV

c) Additional Interactions of Replaceability, RF

worker, and a positive and marginally insignificant coeffi cient in the regression for log TFP.

The table also shows a precisely estimated and positive coeffi cient on ∆Rob_Adoptionij in

the regression for the employment share of high-skill professions. Hence, the IV results con-

firm our previous evidence, according to which robot adoption induces firms to raise effi ciency

and shifts labor demand in favor of high-skill workers. The effect of robot adoption on total

sales, while positive, is not statistically significant, suggesting again that the productivity

gains from automation may not always translate into lower prices.

A possible concern with our identification strategy is that the suitability of an industry

for automation, Rob_Suitabilityij, could be correlated with other industry-level factors that

influence outcomes differentially across firms with heterogeneous levels of Replaceabilityij.

To raise confidence in our IV results, we therefore augment the specification by adding other

industry-level characteristics, both linearly and interacted with Replaceabilityij. In particu-
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lar, we consider: (i) total imports and exports, to account for differences in import compe-

tition and export opportunities across industries; (ii) the average unit value of imports, to

accommodate cross-industry differences in the cost of sourcing inputs from abroad; and (iii)

the average unit value of exports, to account for cross-industry differences in product charac-

teristics such as quality. Similar to Rob_Suitabilityij, we construct each of these variables in

the initial year by aggregating across firms other than i. The results are reported in panels

b) and c) of Table 6, which contain second-stage and reduced-form coeffi cients, respectively.

Reassuringly, the estimated coeffi cients are similar to our baseline estimates, suggesting that

our evidence is unlikely to be confounded by other industry-level characteristics that could

interact with replaceability.

6 Conclusions

In this paper, we have documented how the adoption of industrial robots affects a series of

firm-level outcomes using data from the universe of French firms observed between 1994 and

2013. To better inform our empirical strategy, we have built a model in which heterogeneous

firms invest in automation. Robots saves on production workers, but they also requires non-

production workers such as engineers and managers. A decline in the cost of capital induces

firms to invest more in automation, with ambiguous effects on employment. On the one

hand, machines displace workers; on the other hand, the increase in productivity raises the

demand for all factors. Importantly, these effects vary across firms: since automation saves

on the variable cost, firms facing a higher demand invest more in automation and are more

likely to shed workers. We also allow for the possibility that automation, by fostering the

technological advantage of top firms, increases market power.

The model illustrates one challenge in testing the effect of automation on employment:

demand shocks tend to generate a positive correlation between automation and employment

even when exogenous changes in automation would lead to job losses. A second key challenge

that researchers have faced so far is the measurement of automation at the firm level. The

main contribution of this paper is to propose a solution to these diffi culties. We have shown

how data on firm imports of industrial robots can be used to build proxies for automation

that are independent of demand shocks. Our rich data set allows us to document a number

of empirical patterns.

First, we have shown that robot adopters differ significantly from other firms: they are

larger, more productive and employ a higher share of high-skill workers. Over time, robot

adoption occurs after periods of expansion in firm size, and is followed by improvements in
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firm effi ciency and an increase in demand for low-skill workers. Guided by our theoretical

model, we have then developed various empirical strategies to identify the causal effects of

robot adoption. Our results suggest that, while demand shocks generate a positive correlation

between robot adoption and employment, exogenous changes in automation lead to job losses,

especially for low-skill workers.

We also found that, while robot adoption increases significantly sales per worker, its

effect on total sales is much less strong, suggesting that the effi ciency gains do not always

translate into an equivalent fall in prices. These results raise concerns on some possible

negative effects of automation: besides the costly displacement of workers emphasized in the

literature, our findings suggest that the productivity gains from automation may be partly

offset by an increase in markups and that the widespread diffusion of automation, especially

among already large firms, may have contributed to the rise of market power.19

While this paper is a first attempt at identifying the firm-level effect of the adoption of

industrial robots, much remains to be done. First, in this paper we have focused attention

to firms that import robots. However, it would also be interesting to study what happens to

other firms in the same industry. In particular, robot adoption is likely to induce reallocation

of market shares away from non adopters. Given that these firms differ markedly in many

dimensions, such a reallocation is likely to have significant effects on the demand for labor

and welfare. Estimating and quantifying these industry-level adjustments seems an important

step to fully understand the aggregate impact of automation.20

Second, investigating more the dynamic effects of automation seems equally important.

For instance, while we have found evidence consistent with the hypothesis that automation

may lead to higher markups, the effect on market power might be transitory. For instance, po-

tential competitors may learn from robot adopters, thereby eroding the technological gap, or

it could simply be that firms adjust prices slowly to changes in productivity. Third, studying

more the labor-market adjustments to automation seems crucial for designing policies that

could guarantee the benefits from new technologies to be fully realized and broadly shared.

Given the speed of technological progress and its potentially disruptive effects, this is likely

to become one of the most pressing challenges for advanced economies in the near future.

19On the recent rise of market power, see for instance De Loecker and Eeckhout (2017) and Autor et al.

(2017).
20See Acemoglu, Leclerc and Restrepo (2020), and Koch, Manuylov and Smolka (2019), for some evidence

on this reallocation.
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Appendix A Choice of Automation: Comparative Statics

Denote the marginal benefit and the marginal cost of automation as MBi and MCi, respec-
tively. Then:

∂MBi

∂κi
= MBi × (σ − 1) ln

(
w

ri

)
∂MCi
∂κi

= (δ − 1)
MCi
κi

.

Profits are globally concave in κi when:

∂MBi

∂κi
<
∂MCi
∂κi

.

Under the assumption (σ − 1) ln
(
w
ri

)
< δ − 1, this condition is alwasy satisfied at κ∗i .

We derive here the comparative statics for the optimal level of automation, κ∗i , with
respect to the primitives of the model and prove that:

dκ∗i
dAi

> 0;
dκ∗i
dϕi

> 0;
dκ∗i

d(w/ri)
> 0;

dκ∗i
d(ρi/h)

> 0.

Differentiating the first-order condition (10), we obtain the implicit derivative of κ∗i with
respect to any parameter v as

dκ∗i
dv

=
∂MC
∂v
− ∂MB

∂v
∂MB
∂κi
− ∂MC

∂κi

.

As noted above, condition (11) implies that the denominator is always negative. Hence, to
find the sign of the derivatives of interest, we just need to compute the numerator of the
expression above for Ai, ϕi, (w/ri) and (ρi/h) as follows:

∂MC

∂Ai
− ∂MB

∂Ai
= −MB

Ai
< 0→ dκ∗i

dAi
> 0

∂MC

∂ϕi
− ∂MB

∂ϕi
= − (σ − 1)

MB

ϕi
< 0→ dκ∗i

dϕi
> 0

∂MC

∂ (w/ri)
− ∂MB

∂ (w/ri)
= − MB

(w/ri)

[
κi (σ − 1) +

1

ln (w/ri)

]
< 0→ dκ∗i

d(w/ri)
> 0

∂MC

∂ (ρi/h)
− ∂MB

∂ (ρi/h)
= − MC

(ρi/h)
< 0→ dκ∗i

d(ρi/h)
> 0.

37



Appendix B Automation and the Labor Share

We now study the effect of automation on the labor share. Recall that automation affects
both the demand for production and non-production workers. The labor share, denoted by
λi, is then:

λi ≡
wli + hf (κi, ρi)

piyi
=

(
1− 1

σ

)
(1− κi) +

hκδi
ρiδpiyi

.

After using equations (5) and (14) we obtain:

λi =

(
1− 1

σ

)[
1 + κi

(
1

δ
ln

(
w

ri

)
− 1

)]
. (19)

This equation shows that the labor share falls with automation when ln (w/ri) < δ.

Appendix C Discrete Choice of Automation

We now consider the case in which firm i can choose whether to keep the current level of
automation κ0 at no additional cost or increase it to κ1 > κ0, subject to the cost hκ1

ρi
. The

discrete choice problem facing firm i is

max
κi∈{κ0,κ1}

{
pi (κi) yi (κi)

σ
− hf (κi, ρi)

}
.

The condition for i to choose κ1 is

pi (κ1) yi (κ1)− pi (κ0) yi (κ0)

σ
>
hκ1

ρi
,

which, after using (1) and (9), becomes

Ai
σ

[
ϕσw−σ

(
1− 1

σ

)σ]1−1/σ [(
w

ri

)κ1σ
−
(
w

ri

)κ0σ]1−1/σ

>
hκ1

ρi
.

The left-hand side captures the benefit of further automation, while the right-hand side
corresponds to its cost.
In this case, we can express the comparative statics in terms of the probability that an

increase in any parameter induces a switch from κ0 to κ1. In particular, we are interested in
the effect of an increase in w

ri
and its interaction with Ai, ϕi and ρi. It is easy to show that

the left-hand side, denoted by Bi, is increasing in w
r
:

∂Bi

∂
(
w
ri

) =
(σ − 1)Ai

σ

[
ϕσi w

−σ
(

1− 1

σ

)σ]1−1/σ

[
κ1

(
w
ri

)κ1σ−1

− κ0

(
w
ri

)κ0σ−1
]

[(
w
ri

)κ1σ
−
(
w
ri

)κ0σ]1/σ
> 0.
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This means that increasing automation is more likely to be optimal for lower relative cost of
capital (ri/w).
To characterize the interaction with Ai and ϕi, we compute the cross derivatives of Bi,

∂2Bi

∂
(
w
ri

)
∂Ai

=
∂Bi

∂
(
w
ri

)A−1
i > 0,

∂2Bi

∂
(
w
ri

)
∂ϕi

=
∂Bi

∂
(
w
ri

)σϕ−1
i > 0,

which imply that the likelihood of further automation increases more with (w/ri) for larger
and more productive firms.
The derivative of the automation cost with respect to ρi,

∂

∂ρi

(
hκ1

ρi

)
= −hκ1

ρ2
i

< 0,

suggests that an increase in (w/ri) increases more the likelihood of further automation for
firms with higher replaceability ρi, since these face a lower cost.
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