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Appendix B: Extensions of the benchmark model

0.1 Log-Normally distributed IO coefficients

Consider a more general version of the model, where the elements γji’s of the input-output matrix Γ are

independent random draws from a log-Normal distribution and are thus allowed to vary across countries

and sectors. As we explain in more detail later, a log-Normal distribution is an appropriate choice due to

(i) equation (9) establishing that sectoral multipliers can be approximated by the sum of IO coefficients

in the corresponding row of the IO matrix (shifted and multiplied by 1/n), (ii) the fact that sectoral

multipliers are log-Normally distributed, and (iii) the sum of independent log-Normal random variables

is approximately log-Normal according to the Fenton-Wilkinson method (Fenton, 1960).

When (non-zero) IO coefficients are not all equal to γ̂, the term
∑n

i=1

∑
js.t. γji 6=0 µiγji log γji in

equation (7) is no longer equal to
∑n

i=1 µiγ log(γ̂) (as in (10)). Instead, we can express it using the

approximation of µi in (9) and extending the function γji log γji by continuity to γji = 0 (for which in

the limit it takes the value of 0):

n∑
i=1

n∑
j=1

µiγji log γji =
1

n

n∑
i=1

n∑
j=1

(
1 +

n∑
s=1

γis

)
γji log γji =

=
1

n

n∑
i=1

n∑
j 6=i

(
1 +

n∑
s=1

γis

)
γji log γji +

1

n

n∑
i=1

(
1 +

n∑
s=1

γis

)
γii log γii =

=
1

n

n∑
i=1

n∑
j 6=i

(
1 +

n∑
s=1

γis

)
γji log γji +

1

n

n∑
i=1

1 +
n∑
s 6=i

γis

 γii log γii +
1

n

n∑
i=1

γ2ii log γii.

To employ this in our estimation, we need to calculate the expectation of this expression. Given the
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assumption that all IO coefficients are distributed independently, we obtain that

E

 n∑
i=1

n∑
j=1

µiγji log γji

 =
1

n

n∑
i=1

n∑
j 6=i

(
1 +

n∑
s=1

E [γis]

)
E [γji log γji] +

1

n

n∑
i=1

1 +
n∑
s 6=i

E [γis]

E [γii log γii] +
1

n

n∑
i=1

E
[
γ2ii log γii

]
.

Then it remains to calculate the expectations E [γij ], E [γji log γji] and E
[
γ2ii log γii

]
. First, let us denote

by (µγ , σγ) the mean and variance of the Normal distribution of log(γij). E [γij ] can be expressed in

terms of these parameters using the relationship between the Normal and log-Normal distributions:

E [γij ] = eµγ+
1
2
σ2
γ .

The expressions for E [γji log γji] and E
[
γ2ii log γii

]
are less straightforward. They are established by the

following claim.

Claim If x ∼ log-Normal with parameters of the corresponding Normal distribution (µγ , σγ), then

E [x log x] = eµγ+
σ2
γ
2

(
µγ + σ2γ

)
and E

[
x2 log x

]
= e2µγ+2σ2

γ
(
µγ + 2σ2γ

)
.

Proof.

E [x log x] =

∫ ∞
0

x log x
1

x
√

2πσγ
e
− (log x−µγ)2

2σ2
γ dx

Let log x = y, so that dy = dx
x . Then

E [x log x] = E [eyy] =

∫ ∞
−∞

eyy
1√

2πσγ
e
− (y−µγ)2

2σ2
γ dy =

1√
2πσγ

∫ ∞
−∞

ye
− (y−µγ)2

2σ2
γ

+y
dy =

=
1√

2πσγ

∫ ∞
−∞

ye
−
y2+µ2

γ−2yµγ−2σ2
γy

2σ2
γ dy =

1√
2πσγ

∫ ∞
−∞

ye
− [y−(µγ+σ2

γ )]
2

2σ2
γ e

(µγ+σ2
γ )2−µ2

γ

2σ2
γ dy =

= e

2µγσ
2
γ+σ4

γ

2σ2
γ

1√
2πσγ

∫ ∞
−∞

ye
− [y−(µγ+σ2

γ )]
2

2σ2
γ dy = eµγ+

σ2
γ
2
(
µγ + σ2γ

)
.

Similarly,

E
[
x2 log x

]
= E

[
e2yy

]
=

∫ ∞
−∞

e2yy
1√

2πσγ
e
− (y−µγ)2

2σ2
γ dy =

1√
2πσγ

∫ ∞
−∞

ye
− (y−µγ)2

2σ2
γ

+2y
dy =

=
1√

2πσγ

∫ ∞
−∞

ye
−
y2+µ2

γ−2yµγ−4σ2
γy

2σ2
γ dy =

1√
2πσγ

∫ ∞
−∞

ye
− [y−(µγ+2σ2

γ )]
2

2σ2
γ e

(µγ+2σ2
γ )2−µ2

γ

2σ2
γ dy =

= e

4µγσ
2
γ+4σ4

γ

2σ2
γ

1√
2πσγ

∫ ∞
−∞

ye
− [y−(µγ+2σ2

γ )]
2

2σ2
γ = e2µγ+2σ2

γ
(
µγ + 2σ2γ

)
.
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Collecting the terms, we obtain:

E

 n∑
i=1

n∑
j=1

µiγji log γji

 =
1

n

n∑
i=1

n∑
j 6=i

(
1 +

n∑
s=1

E [γis]

)
E [γji log γji] +

1

n

n∑
i=1

1 +
n∑
s 6=i

E [γis]

E [γii log γii] +
1

n

n∑
i=1

E
[
γ2ii log γii

]
=

1

n

n∑
i=1

n∑
j 6=i

(
1 +

n∑
s=1

E [γis]

)
E [γji log γji] +

+
1

n

n∑
i=1

E [γii log γii] +
1

n

n∑
i=1

E [γii log γii]

 n∑
s 6=i

E [γis]

+ n
1

n
E
[
γ2ii log γii

]
=

(
1 + neµγ+

σ2
γ
2

)
(n− 1)eµγ+

σ2
γ
2
(
µγ + σ2γ

)
+ eµγ+

σ2
γ
2
(
µγ + σ2γ

)
+ (n− 1)eµγ+

σ2
γ
2 eµγ+

σ2
γ
2
(
µγ + σ2γ

)
+

+e2µγ+2σ2
γ
(
µγ + 2σ2γ

)
=
[
e

1
2
σ2
γ+µγn+ eσ

2
γ+2µγ

(
n2 − 1

)] (
µγ + σ2γ

)
+ e2σ

2
γ+2µγ

(
µγ + 2σ2γ

)
=

= e
1
2
σ2
γ+µγ

[
n+

(
n2 − 1

)
e

1
2
σ2
γ+µγ

] (
µγ + σ2γ

)
+ e2σ

2
γ+2µγ

(
µγ + 2σ2γ

)
. (1)

Now, it remains to relate the distribution of γji’s to the distribution of sectoral multipliers µj ,

so as to express E
[∑n

i=1

∑n
j=1 µiγji log γji

]
in terms of earlier estimated parameters (mµ, σ

2
µ). This

relationship is provided by equation (9) according to which µj ≈ 1
n + 1

n

∑n
i=1 γji. From this equation it

follows that E(µ) = 1
n + 1

nµsum and var(µ) = 1
n2σ

2
sum, where µsum, σ2sum are the mean and the variance

of the distribution of the sum
∑n

i=1 γji. Now, while E(µ), var(µ) can be expressed in terms of (mµ, σ
2
µ)

by means of the relationship between the Normal and log-Normal distributions,1 µsum, σ2sum can be

expressed in terms of (µγ , σ
2
γ) by means of the Fenton-Wilkinson method. This then provides us with

the sought-after relationship between parameters (µγ , σ
2
γ) and (mµ, σ

2
µ).

The Fenton-Wilkinson method implies that the distribution of the sum
∑n

i=1 γji of the independent

log-Normally distributed random variables is approximately log-Normal with

σ2sum = log


(
eσ

2
γ

)
− 1

n+ 1

 , (2)

µsum = log (neµγ ) +
1

2

(
σ2γ − σ2sum

)
= log (neµγ ) +

1

2

σ2γ − log


(
eσ

2
γ

)
− 1

n+ 1

 . (3)

Note that it is this method, in the first place, that justifies our assumption that IO coefficients γji’s

are log-Normally distributed. Indeed, as the distribution of sectoral multipliers µj has been shown

to be log-Normal, and µj ≈ 1
n + 1

n

∑n
i=1 γji, the sum

∑n
i=1 γji must be distributed log-Normally. By

Fenton-Wilkinson method, this is consistent with γji’s being log-Normal.

Using (2) – (3), equations E(µ) = 1
n + 1

nµsum, var(µ) = 1
n2σ

2
sum, and the expressions for E(µ), var(µ)

1E(µ) = emµ+1/2σ2
µ , var(µ) = e2mµ+mΛ+σ2

µ · [eσ
2
µ − 1]
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in footnote 1, we derive:

eσ
2
γ = (n+ 1) eσ

2
sum + 1 = (n+ 1)en

2var(µ) + 1 = (n+ 1)en
2e

2mµ+mΛ+σ2
µ ·[eσ

2
µ−1] + 1,

eµγ =
eµsum

n

(
n+ 1 + e−σ

2
sum

)− 1
2

=
enE(µ)−1

n

(
n+ 1 + e−n

2var(µ)
)− 1

2
=

=
ene

mµ+1/2σ2
µ−1

n

(
n+ 1 + e−n

2e
2mµ+mΛ+σ2

µ ·[eσ
2
µ−1]

)− 1
2

.

This is the relationship between (µγ , σ
2
γ) and (mµ, σ

2
µ). Let us denote the expression for eσ

2
γ by x and

the expression for eµγ by z. Then using this in (1), we obtain:

E

 n∑
i=1

n∑
j=1

µiγji log γji

 = e
1
2
σ2
γ+µγ

[
n+

(
n2 − 1

)
e

1
2
σ2
γ+µγ

] (
µγ + σ2γ

)
+ e2σ

2
γ+2µγ

(
µγ + 2σ2γ

)
=

= x
1
2 z[n+ (n2 − 1)x

1
2 z](log (x) + log (z)) + x2z2(log (z) + 2 log (x)).

Now we can substitute this for E
[∑n

i=1

∑n
j=1 µiγji log γji

]
in the expression for the expected aggregate

income, and we arrive at

E(y) = nemµ+mΛ+1/2(σ2
µ+σ

2
Λ)+σµ,Λ − (1 + γ) + E

 n∑
i=1

n∑
j=1

µiγji log γji

+

+ log(1− γ)− log n+ α log(K) + emµ+1/2σ2
µ

n∑
i=1

log
(
ΛUSi

)
=

= nemµ+mΛ+1/2(σ2
µ+σ

2
Λ)+σµ,Λ − (1 + γ) +

+ x
1
2 z[n+ x

1
2 z(n2 − 1)](log (x) + log (z)) + x2z2(log (z) + 2 log (x)) +

+ log(1− γ)− log n+ α log(K) + emµ+1/2σ2
µ

n∑
i=1

log
(
ΛUSi

)
. (4)

This is the expression for the expected aggregate income in terms of parameter estimates used in the

benchmark model (analogue of equation (13)). We bring it to estimation and predict cross-country

income differences in the setting with asymmetric IO linkages.

0.2 Cross-country differences in final demand structure

Consider now the economy that is identical to our benchmark economy in all but demand shares for final

goods. Namely, let us generalize the production function for the aggregate final good to accommodate

arbitrary, country-sector-specific demand shares:

Y = yβ1
1 · ... · y

βn
n ,

where βi ≥ 0 for all i and
∑n

i=1 βi = 1. As before, suppose that this aggregate final good is fully allocated

to households’ consumption, that is, Y = C.
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Using the generic expression for aggregate output (27) of Proposition 2 and adopting this expression

to the case of our economy here, we obtain the following formula for y:

y =
n∑
i=1

µiλi +
n∑
i=1

∑
j s.t. γji 6=0

µiγji log γji +
n∑
i=1

µi(1− γi)log(1− γi) +

+

n∑
i=1

βi log(βi) + α logK.

In this formula the vector of sectoral multipliers is defined differently than before, to account for the

arbitrary demand shares. The new vector of multipliers is µ = {µi}i = [I − Γ]−1β. Its interpretation,

however, is identical to the one before: each sectoral multiplier µi reveals how a change in productivity

(or distortion) of sector i affects the overall value added in the economy.

Given this expression for y, we now derive the approximate representation of the aggregate output to

be used in our empirical analysis. For this purpose, we employ the same set of simplifying assumptions

as before, which results in:

y =
n∑
i=1

µiΛ
rel
i +

n∑
i=1

µiγ log(γ̂) + log(1− γ) +
n∑
i=1

βi log(βi) + α log(K)−

− (1 + γ) +
n∑
i=1

µi log(ΛUSi ). (5)

Following the same procedure as earlier, we use this expression to find the predicted value of y. First,

we estimate the distribution of (µi,Λ
rel
i ) in every country. We find that even though the definition of

sectoral multipliers is now different from the one in our benchmark model, the distribution of the pair

(µi,Λ
rel
i ) is still log-Normal.2 Then, using the estimates of the parameters of this distribution, m and

Σ, together with the equations (12) (see footnote 32), we find the predicted aggregate output E(y) as a

function of these parameters:3

E(y) = nemµ+mΛ+1/2(σ2
µ+σ

2
Λ)+σµ,Λ + (1 + γ)(γ log(γ̂)− 1) + log(1− γ) +

+

n∑
i=1

βi log(βi) + α log(K) + emµ+1/2σ2
µ

n∑
i=1

log
(
ΛUSi

)
. (6)

The resulting expression for E(y) is similar to (13) in our benchmark model.

0.3 Imported intermediates

Another extension of the benchmark model allows for trade between countries. The traded goods are used

as inputs in production of the n competitive sectors, so that both domestic and imported intermediate

goods are employed in sectors’ production technology. Then the output of sector i is determined by the

2In fact, differently from the benchmark model, the distribution is ”exactly” log-Normal and not truncated log-Normal
as it was before.

3As before, we also assume for simplicity that all other variables on the right-hand side of (??) are non-random.
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following production function:

qi = Λi
(
kαi l

1−α
i

)1−γi−σi dγ1i
1i d

γ2i
2i · ... · d

γni
ni · f

σ1i
1i f

σ2i
2i · ... · f

σni
ni , (7)

where dji is the quantity of the domestic good j used by sector i, and fji is the quantity of the imported

intermediate good j used by sector i. The imported intermediate goods are assumed to be different, so

that domestic and imported goods are not perfect substitutes. Also, with a slight abuse of notation,

we assume that there are n different intermediate goods that can be imported.4 The exponents γji,

σji ∈ [0, 1) represent the respective shares of domestic and imported good j in the technology of firms

in sector i, and γi =
∑n

j=1 γji, σi =
∑n

j=1 σji ∈ (0, 1) are the total shares of domestic and imported

intermediate goods, respectively.

As in our benchmark economy, each domestically produced good can be used for final consumption,

yi, or as an intermediate good, and all final consumption goods are aggregated into a single final good

through a Cobb-Douglas production function, Y = y
1
n
1 · ... · y

1
n
n . Now, in case of an open economy

considered here, the aggregate final good is used not only for households’ consumption but also for

export to the rest of the world; that is, Y = C + X. The exports pay for the imported intermediate

goods and are defined by the balanced trade condition:

X =
n∑
i=1

n∑
j=1

pjfji, (8)

where pj is the exogenous world price of the imported intermediate goods. Note that the balanced trade

condition is reasonable to impose if we consider our static model as describing the steady state of the

model.

Aggregate output y is determined by equation (27) of Proposition 2, adopted to our framework here:

y =
1∑n

i=1 µi(1− γi − σi)

( n∑
i=1

µiλi +

n∑
i=1

∑
j s.t. γji 6=0

µiγji log γji +

n∑
i=1

∑
j s.t.σji 6=0

µiσji log σji −

−
n∑
i=1

n∑
j=1

µiσji log p̄j +
n∑
i=1

µi(1− γi − σi)log(1− γi − σi)− log n

)
+

+ log

(
1 +

n∑
i=1

σiµ̄i

)
+ α logK,

where vector {µ̄i}i = 1
n [I − Γ̄]−11 is a vector of multipliers corresponding to Γ̄ and Γ̄ = {γ̄ji}ji =

{ 1nσi + γji}ji is an input-output matrix adjusted for shares of imported intermediate goods.5

In the empirical analysis we use an approximate representation of aggregate output, where a range

4This is consistent with the specification of input-output tables in our data.
5Observe that

(
I − Γ̄

)−1
exists because the maximal eigenvalue of Γ̄ is bounded above by 1. The latter is implied by

the Frobenius theory of non-negative matrices, that says that the maximal eigenvalue of Γ̄ is bounded above by the largest
column sum of Γ̄, which in our case is smaller than 1 as soon as σi + γi < 1:

∑n
j=1

(
1
n
σi + γji}ji

)
= σi + γi < 1.
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of simplifying assumptions is imposed. First, to be able to compare the results with the results of the

benchmark model, we employ the same assumptions on in-degree and elements of matrix Γ. Second, in

the new framework with imported intermediates we also impose some conditions on imports. We assume

that the total share of imported intermediate goods used by any sector of a country is sufficiently small

and identical across sectors, that is, σi = σ for any sector i.6 We also regard any non-zero elements of

the vector of import shares of sector i as the same, equal to σ̂i (such that
∑

j s.t.σji 6=0 σ̂i = σ). Then we

obtain the following approximation for the aggregate output y:

y =
1

(1− σ(1 + γ))

( n∑
i=1

µiΛ
rel
i +

n∑
i=1

µiγ log γ̂ +
n∑
i=1

µiσ log σ̂i −

−
n∑
i=1

µiσ̂i
∑

j s.t.σji 6=0

log p̄j − log n

)
+ log(1− γ − σ) + σ (1 + γ + σ) + α logK −

− 1 + γ

(1− σ(1 + γ))
+

1

(1− σ(1 + γ))

n∑
i=1

µi log(ΛUSi ).

Now, using equations (12) (see footnote 32) for the parameters of the bivariate log-Normal distribution

of (µi,Λ
rel
i ), we can derive the predicted aggregate output E(y):

E(y) =
n

(1− σ(1 + γ))
emµ+mΛ1/2(σ

2
µ+σ

2
Λ)+σµ,Λ +

+
1

(1− σ(1 + γ))

n∑
i=1

σ log σ̂i − σ̂i
n∑

j=1,j s.t. σji 6=0

log p̄j + log(ΛUSi )

 emµ+1/2σ2
µ +

+
(1 + γ)γ log γ̂

(1− σ(1 + γ))
− log n

(1− σ(1 + γ))
+ log(1− γ − σ) + σ (1 + γ + σ) + α log(K)− 1 + γ

(1− σ(1 + γ))
.

We bring this expression to data and evaluate predicted output in all countries of our data sample. We

note, however, that the vector of world prices of the imported intermediates {pj}nj=1 is not provided in

the data. Then to make the comparison of aggregate income in different countries possible, we assume

that for any sector i, the value of σ̂i
∑n

j=1,j s.t. σji 6=0 log p̄j is the same across countries, so that this term

cancels out when the difference in countries’ predicted output is considered. For this purpose we assume

that in all countries, the vector of shares of the imported intermediate goods used by sector i is the same

and that all countries face the same vector of prices of the imported intermediate goods {pj}nj=1.

0.4 Skilled labor

Consider the economy of our benchmark model where we introduce the distinction between skilled and

unskilled labor. This distinction implies that the technology of each sector i ∈ 1 : n in every country

6This allows approximating log
(
1 +

∑n
i=1 σiµ̄i

)
with σ

∑n
i=1 µ̄i = σ (1 + γ + σ), where the equality follows from µ̄i ≈

µi+
1
n

∑n
j=1

1
n
σj . The latter, in turn, is a result of the approximation of {µ̄i}i by the first elements of the convergent power

series 1
n

(∑+∞
k=0 Γ̄

k
)

1 and the analogous approximation for {µi}ni=1 (see section 3.3).
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can be described by the following Cobb-Douglas function:

qi = Λi

(
kαi u

δ
i s

1−α−δ
i

)1−γi−σi
dγ1i
1i d

γ2i
2i · ... · d

γni
ni , (9)

where si and ui denote the amounts of skilled and unskilled labor used by sector i, γi =
∑n

j=1 γji is the

share of intermediate goods in the total input use of sector i and α, δ, 1−α−δ ∈ (0, 1) are the respective

shares of capital, unskilled and skilled labor in the remainder of the inputs. The total supply of skilled

and unskilled labor in the economy is fixed at the exogenous levels of S and U , respectively.

In this case, the logarithm of the value added per capita, y = log (Y/(U + S)), is given by the

expression (27) of Proposition 2, adopted to our framework here. In fact, it is only slightly different from

the expression for y in our benchmark model (cf. Proposition 1), where δ = 0 and the total supply of

labor is normalized to 1. With skilled and unskilled labor, the aggregate output per capita is given by:

y =
n∑
i=1

µiλi +
n∑
i=1

∑
j s.t. γji 6=0

µiγji log γji +
n∑
i=1

µi(1− γi)log(1− γi)− log n+

+ α logK + δ logU + (1− α− δ) logS − log(U + S).

Then the approximate representation of y is also similar to the corresponding representation of y in the

benchmark model (cf. (10)):

y =
n∑
i=1

µiΛ
rel
i +

n∑
i=1

µiγ log(γ̂) + log(1− γ)− log n+ α log(K) +

+ δ logU + (1− α− δ) logS − log(U + S)− (1 + γ) +
n∑
i=1

µi log(ΛUSi ), (10)

where the same assumptions and notation as before apply.

We now employ this representation of y to find the predicted value of aggregate output E(y). Note

that since the new framework, with skilled and unskilled labor, does not modify the definition of the

sectoral multipliers, the distribution of the pair (µi,Λ
rel
i ) in every country remains the same. It is a

bivariate log-Normal distribution with parameters m and Σ that have been estimated for our benchmark

model. Using these parameters, together with the equations in (12) (see footnote 32), we derive the

expression for the predicted aggregate output E(y) in terms of the estimated parameters:

E(y) = nemµ+mΛ+1/2(σ2
µ+σ

2
Λ)+σµ,Λ + (1 + γ)(γ log(γ̂)− 1) + log(1− γ)− log n+ α log(K) +

+ δ logU + (1− α− δ) logS − log(U + S) + emµ+1/2σ2
µ

n∑
i=1

log
(
ΛUSi

)
. (11)

This equation for the predicted aggregate output is analogous to the equation (13) that we employed in

our estimation of the benchmark model.
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Appendix D: Additional Figures and Tables

Figure A-1: Distribution of sectoral in-degrees (left) and out-degrees (right) (GTAP sample)

Table A-1: Countries: WIOD Sample

countries
AUS IDN
AUT IND
BEL IRL
BGR ITA
BRA LTU
CAN LVA
CHN MEX
CYP MLT
CZE NLD
DEU POL
DNK PRT
ESP ROM
EST RUS
FIN SVK
FRA SVN
GBR SWE
GRC TUR
HUN USA
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Table A-2: Countries: GTAP Sample

countries
ALB LTU
ARG LUX
AUS LVA
AUT MDG
BEL MEX
BGD MLT
BGR MOZ
BRA MWI
BWA MYS
CAN NLD
CHE NZL
CHL PER
CHN PHL
COL POL
CYP PRT
CZE ROM
DEU RUS
DNK SGP
ESP SVK
EST SVN
FIN SWE
FRA THA
GBR TUN
GRC TUR
HKG TWN
HRV TZA
HUN UGA
IDN URY
IND USA
IRL VEN
ITA VNM
JPN ZAF
KOR ZMB
LKA ZWE
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Table A-3: Sector List
WIOD sectors GTAP sectors

1 Agriculture 1 Agriculture
2 Mining 2 Coal
3 Food 3 Oil
4 Textiles 4 Gas
5 Leather 5 Mining
6 Wood 6 Food
7 Paper 7 Textiles
8 Refining 8 Apparel
9 Chemicals 9 Leather

10 Plastics 10 Wood
11 Minerals 11 Paper
12 Metal products 12 Refining
13 Machinery 13 Chemicals
14 Elec. equip. 14 Minerals
15 Transport equip. 15 Iron
16 Manufacturing nec 16 Oth. metals
17 Electricity 17 Metal products
18 Construction 18 Cars
19 Car retail. 19 Transport equip.
20 Wholesale trade 20 Electric equip.
21 Retail trade 21 Oth. Machinery
22 Restaurants 22 Manuf. nec
23 Inland transp. 23 Electricity
24 Water transp. 24 Gas Distr.
25 Air transp. 25 Water Distr.
26 Transp. nec. 26 Construction
27 Telecomm. 27 Trade
28 Fin. serv. 28 Inland transp.
29 Real est. 29 Water transp.
30 Business serv. 30 Air transp.
31 Pub. admin. 31 Telecomm.
32 Education 32 Financial serv.
33 Health 33 Insurance
34 Social serv. 34 Business serv.
35 Household empl. 35 Recreation

36 Education, Health
37 Dwellings
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