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Abstract

We study the importance of input-output (IO) linkages and sectoral productivity (TFP) levels

in determining cross-country income differences. Using data on IO tables and sectoral TFP levels

for 38 countries, we uncover important differences in the interaction of IO structure with sectoral

TFP levels across countries: while highly connected sectors are more productive than the typical

sector in poor countries, the opposite is true in rich ones. To assess the quantitative role of

linkages and sectoral TFP differences in cross-country income differences, we decompose cross-

country variation in real GDP per worker using a multi-sector general equilibrium model. We

find that (i) IO linkages substantially amplify fundamental sectoral TFP variation but that (ii)

this amplification is significantly weaker than the one suggested by a simple IO model with an

aggregate intermediate good that abstracts from the details of the interaction between sectoral

TFPs and countries’ IO structure.
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1 Introduction

The development accounting literature1 has established that cross-country differences in income per

capita come from two equally important sources: from aggregate productivity differences and from

differences in physical production factors. This paper takes this a step further and investigates how

sectoral TFP differences interact with countries’ input-output (IO) structure to generate aggregate

total factor productivity (TFP) differences. IO linkages between sectors can potentially amplify

sectoral productivity differences, as noted by a literature in development economics initiated by

Hirschman (1958). In this paper we show, theoretically and quantitatively, that IO structure and

cross-country differences in the interaction of IO structure with sectoral TFP levels are indeed

of first-order importance for explaining cross-country variation in aggregate TFP and income per

worker. Our main findings are that: (i) IO linkages substantially amplify cross-country sectoral

TFP variation; (ii) amplification is significantly weaker than the one suggested by an IO model

with an aggregate intermediate good that abstracts from the details of countries’ IO structure (e.g.,

Ciccone, 2002; Jones, 2011a).

We start from building a neoclassical multi-sector model with IO linkages that admits a closed-

form solution for GDP per worker as a log-linear function of sectoral IO multipliers, sectoral TFP

levels and the capital stock per worker.2 Sectoral IO multipliers represent each sector’s importance

or “weight” in aggregate TFP due to intermediate goods linkages, thus summarizing the role of

country’s IO structure. The (first-order) IO multiplier of a sector depends on the value-added

share of that sector, the number of sectors to which the sector supplies and the intensity with

which its output is used as an input by other sectors.3 It measures by how much aggregate income

changes if productivity of a given sector changes by one percent. Relatedly, the aggregate IO

multiplier determines by how much aggregate income changes if productivity in all sectors changes

by the same amount. Since IO linkages induce propagation of shocks from one sector to another,

IO multipliers tend to amplify the impact of productivity changes compared to a model without

linkages. Moreover, TFP changes in sectors with high multipliers have a larger impact on aggregate

income compared to sectors with low multipliers. Thus, higher aggregate IO multipliers, higher

average TFP levels and a positive correlation between sectoral IO multipliers and TFP levels all

have a positive effect on income per worker.

1See, e.g., Klenow and Rodriguez-Clare (1997), Hall and Jones (1999), Caselli (2005).
2In our baseline model, we take variation in IO structure across countries as exogenous. Due to Cobb-Douglas

technology, the IO coefficients correspond to the coefficients of the sectoral Cobb-Douglas production functions, which
are independent of TFP levels. In robustness checks we account for possible endogeneity of IO linkages by: (i) allowing
for sector-country-specific tax wedges; (ii) introducing CES production functions, which makes IO linkages endogenous
to sectoral TFP levels.

3The intensity of input use is measured by the IO coefficient, which states the cents spent on that input per dollar
of output produced. There are also higher-order effects, which depend on the IO coefficients of the sectors to which
the sectors that use the initial sector’s output as an input supply.
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We then use data from the World Input-Output Database (Timmer, 2012) to construct a unique

dataset of IO tables and sectoral TFP levels (relative to those of the U.S.) for 38 low and high-

income countries and 35 sectors. The empirical distribution of sectoral multipliers has a fat right

tail in all countries, so that the TFP levels of a few high-multiplier sectors have a large impact on

aggregate outcomes. Aggregate multipliers are around two on average and are uncorrelated with

countries’ income. Finally, in low-income countries, sectoral IO multipliers and TFP levels are

positively correlated, while they are negatively correlated in rich economies.

To understand the channels of cross-country income differences in our model, we then provide

an exact variance decomposition of log real GDP per worker. The model splits income variation

into variation in the capital stock per worker and variation in aggregate TFP. The latter can be

further decomposed into (i) variation in aggregate multipliers and average sectoral TFP levels and

(ii) variation in the covariance between sectoral TFPs and multipliers across countries.4 In line

with the standard result from development accounting, variation in capital stocks per worker and

in aggregate TFP each explain roughly half of the variation in income per worker. Here the role

of IO linkages in amplifying sectoral productivity differences becomes clear when we compare this

result to the one of a multi-sector model without linkages (and thus without amplification) but with

the same sectoral TFP differences. Such a model would generate much smaller income differences

than those present in the data and would counterfactually attribute 70% of income variation to

differences in production factors and only 30% to variation in aggregate TFP. Thus, amplification

through linkages is key to reconcile the relatively modest sectoral TFP differences in the data with

the substantial observed aggregate TFP variation.

To understand how the details of countries’ IO structure matter for aggregate TFP variation

compared to a model with an aggregate intermediate good (e.g. Jones, 2011a), we go a step further:

we decompose the 50% income variation due to aggregate TFP differences into 60% due to average

sectoral TFP differences amplified by aggregate multipliers and an around 10% reduction due to

variation in the covariance term between TFP levels and multipliers.5 Intuitively, the average sec-

toral TFP differences, amplified by aggregate multipliers, are mitigated by countries’ IO structures:

in low-income countries, low-productivity sectors tend to be poorly connected (have low multipliers)

4In the light of Hulten’s (1978) results, one may be skeptical whether using a structural general equilibrium model
and considering the features of the IO matrices adds much compared to computing aggregate TFP as a weighted
average of sectoral TFPs (where the adequate ’Domar’ weights correspond to the shares of sectoral gross output in
GDP). Absent distortions, Domar weights equal sectoral IO multipliers and summarize the direct and indirect effect of
IO linkages. However, such a reduced-form approach does not allow to assess which features of the IO structure matter
for aggregate outcomes or to compute counter-factual outcomes due to changes in IO structure or productivities, as
we do. Finally, as Basu and Fernald (2002) and Baqaee and Farhi (2020) show, in the presence of sector-specific
distortions (that we consider in an extension) the simple reduced-form connection between sectoral productivities and
aggregate TFP via Domar weights breaks down.

5In our baseline model we model sectoral TFP as Hicks neutral. If we alternatively consider TFP to augment
primary production factors, the mitigation of cross-income differences due to the negative covariance term becomes
substantially larger and amounts to up to 24% of income variation.
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and are thus not too harmful for the economy, while sectors with high multipliers have relatively

high productivity levels and thus boost aggregate income.6 By contrast, in high-income countries,

high-multiplier sectors tend to have below-average productivity levels, which reduces income of rich

countries significantly.

In our baseline model, differences in IO structure across countries are exogenously given. How-

ever, one may be concerned that observed IO linkages are affected by (implicit) tax wedges. In

an extension, we thus identify sector-country-specific wedges as deviations of sectoral intermediate

input shares from their cross-country average value: a below-average intermediate input share in

a given sector identifies a positive implicit tax wedge. We show that poor countries have higher

average tax wedges and also tax their high-multiplier sectors relatively more, while the opposite

is the case in rich economies. The relatively larger wedges in poor countries tend to depress their

income compared to the one of rich countries. The role of aggregate TFP variation thus increases to

60% of income variation compared to 50% in the baseline model. Productivity differences account

for around two thirds of aggregate TFP variation, while the remainder is due to variation in wedges.

The negative contribution of the covariance term between sectoral TFPs and sectoral multipliers to

aggregate TFP variation remains similar to the baseline model.

In a further robustness check, we relax the assumption of a unit elasticity of substitution between

intermediate inputs, so that IO linkages become endogenous to prices. We show that an elasticity

of substitution between intermediate inputs different from unity is hard to reconcile with the data

because – depending on whether intermediates are substitutes or complements – it implies that

sectoral IO multipliers and TFP levels should either be positively or negatively correlated in all

countries. Instead, we observe a positive correlation between these variables in poor economies and

a negative one in rich economies.

We also extend our baseline model to incorporate trade in intermediate inputs. The variance

decomposition of income in this model preserves the importance of aggregate TFP differences and

the mitigating role of the covariance term between sectoral TFPs and multipliers. Additionally,

it attributes around 10% of income variation to a terms-of-trade effect: imported intermediate

inputs are relatively more expensive in poor countries and this additionally depresses their income

compared to rich countries. Finally, in the Appendix we relax our previously maintained assumption

that capital shares do not vary across sectors or countries and consider a model with sector-specific

capital shares. We also include human capital as an additional production factor. We show that

the results from the baseline model are robust to these changes.

We then carry out a number of simple counterfactuals with the model. First, we eliminate

TFP differences between countries and set all sectoral TFP levels equal to those of the U.S. Not

6An important exception is agriculture, which in low-income countries has a high IO multiplier and a below-average
productivity level.
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surprisingly, virtually all countries would gain if they had the U.S. productivity levels. Low-income

countries would benefit most, with some of them almost doubling their income per worker. Second,

we impose that sectoral IO multipliers and productivities are uncorrelated. This scenario would hurt

low-income countries significantly: they would lose up to 20% of income per worker, because they

would no longer experience the advantage of having above-average TFP levels in high-multiplier

sectors. By contrast, high-income countries would benefit, since for them the correlation between

multipliers and TFP levels would no longer be negative. In the last counterfactual we eliminate the

correlation between sectoral wedges and multipliers. This would benefit a number of low-income

countries and raise their income by around 10%. On the other hand, the income of rich countries

would fall, since these countries tend to have below-average tax wedges in high-multiplier sectors.

1.1 Literature

We now turn to a discussion of the related literature.

Our work is related to the literature on development accounting, which aims at quantifying the

importance of cross-country variation in factor endowments – such as physical, human or natural

capital – relative to aggregate productivity differences in explaining disparities in income per capita

across countries. This literature typically finds that both are roughly equally important in account-

ing for cross-country income differences.7 The approach of development accounting is to specify an

aggregate production function for value added (typically Cobb-Douglas) and to back out produc-

tivity differences as residual variation that reconciles the observed income differences with those

predicted by the model given the observed variation in factor endowments. Thus, this aggregate

production function abstracts from cross-country differences in the underlying IO structure. We

contribute to this literature by showing how sectoral TFP differences interact with IO structure to

map into aggregate cross-country TFP variation.

The importance of linkages and IO multipliers for aggregate income differences has been high-

lighted by Fleming (1955), Hirschmann (1958), and, more recently, by Ciccone (2002) and Jones

(2011 a,b). These authors point out theoretically that if the intermediate share in gross output is

sizable, there exist large multiplier effects: small firm (or industry-level) productivity differences

or distortions that lead to misallocation of resources across sectors or plants can add up to large

aggregate effects. Our study confirms the empirical importance of amplification through IO mul-

tipliers, while also highlighting that cross-country differences in the interaction between sectoral

productivities and IO structure mitigate amplification through aggregate multipliers substantially.

In terms of modeling approach, our paper adopts the framework of the multi-sector real business

cycle model with IO linkages of Long and Plosser (1983); in addition, we model the input-output

7See, e.g., Klenow and Rodriguez-Clare (1997), Hall and Jones (1999), Caselli (2005), Hsieh and Klenow (2010).
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structure quite similarly to the setup of Acemoglu, Carvalho and Ozdaglar (2012).8 In contrast to

these studies, which deal with the relationship between sectoral productivity shocks and aggregate

economic fluctuations, we are interested in the question how sectoral TFP levels interact with the

IO structure to determine aggregate income levels and we provide corresponding empirical evidence.

Other recent related contributions are Oberfield (2018) and Carvalho and Voigtländer (2015),

who develop an abstract theory of endogenous input-output network formation, and Boehm (2020),

who focuses on the role of contract enforcement on aggregate productivity differences in a quanti-

tative structural model with IO linkages. Differently from these papers, we do not try to model the

IO structure as arising endogenously and we take sectoral productivity differences as exogenous.

Instead, we aim at understanding how given differences in IO structure and sectoral productivities

translate into aggregate income differences.

The number of empirical studies investigating cross-country differences in IO structure is quite

limited. In the most comprehensive study up to that date, Chenery, Robinson, and Syrquin (1986)

find that the intermediate input share of manufacturing increases with industrialization and that

IO matrices become denser as countries industrialize. Most closely related to our paper is the

contemporaneous work by Bartelme and Gorodnichenko (2015). They also collect data on IO tables

for many countries and investigate the relationship between IO linkages and aggregate income.9

In reduced-form regressions of income per worker on the average multiplier, they find a positive

correlation between the two variables. Moreover, they investigate how distortions affect IO linkages

and income levels. Differently from the present paper, they do not use data on sectoral productivities

nor disaggregated IO tables. As a consequence, they do not investigate how differences in the

interaction of sectoral multipliers and productivities impact on aggregate income.

The outline of the paper is as follows. In the next section, we lay out our theoretical model

and derive an expression for aggregate GDP per worker in terms of sectoral IO multiplers and TFP

levels. In the following section, we describe our dataset and present some descriptive statistics.

Subsequently, we turn to the empirical quantification of our model. We then present a number of

robustness checks and the results of the counterfactuals. The final section presents our conclusions.

2 Theoretical Framework

2.1 Model

In this section we present a simple model of an economy with intersectoral linkages (based on Long

and Plosser, 1983 and Jones, 2011b) that will be used in the remainder of our analysis. Consider

8Related to Acemoglu et al. (2012) empirical work by Barrot and Sauvagnat (2016) provides reduced-form evidence
for the short-run propagation of exogenous firm-specific shocks in the production network of U.S. firms.

9Grobovsek (2018) performs a development accounting exercise in a more aggregate structural model with two
final and two intermediate sectors.
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a static multi-sector economy. n competitive sectors each produce a distinct good that can be

used either for final consumption or as an input for production in any of the other sectors. The

technology of sector i ∈ 1 : n is Cobb-Douglas with constant returns to scale. Namely, the output

of sector i, denoted by qi, is

qi = Λi

(
1

1− γi
kαi l

1−α
i

)1−γi (d1i
γ1i

)γ1i (d2i
γ2i

)γ2i
· ... ·

(
dni
γni

)γni
(1)

where Λi is the exogenous Hicks-neutral total factor productivity of sector i, ki and li are the

quantities of capital and labor used by sector i and dji is the quantity of good j used in production

of good i (intermediate good produced by sector j).10 The exponent γji ∈ [0, 1) represents the

output elasticity of good j in the production technology of firms in sector i, which also corresponds

to the cost share of sector j’s output, pjdji/piqi. γi =
∑n

j=1 γji ∈ (0, 1) is the total share of

intermediate goods in gross output of sector i, and parameters α, 1 − α ∈ (0, 1) are the shares

of capital and labor in the remainder of the inputs (value added). This specification allows for

arbitrary asymmetries in linkages between sector pairs ij but fixes the output elasticities of labor

and capital to be the same across sectors.11

Given the Cobb-Douglas technology in (1) and competitive markets, the γjis also correspond to

the entries of the IO matrix, measuring the value of spending on input j per dollar of production of

good i. We denote this IO matrix by Γ. The entries of the j’th row of matrix Γ represent the values

of spending on a given input j per dollar of production of each sector in the economy. By contrast,

the elements of the i’th column of matrix Γ are the values of spending on inputs from each sector

in the economy per dollar of production of a given good i.12

The output of sector i can be used either for final consumption, ci, or as an input in sector j:

ci +
n∑
j=1

dij = qi, i = 1 : n (2)

Consumers have Cobb-Douglas utility:

u(c1, ..., cn) =

n∏
i=1

(
ci
βi

)βi
, (3)

where βi ≥ 0 for all i and
∑n

i=1 βi = 1. βi corresponds to consumers’ expenditure share on sector

i. Consumers own all production factors and spend all their income on consumption. Aggregate

expenditure of consumers can be written as
∑

i pici = P ·u, where u is a given utility level and P is

10In Section 5 we consider the case of an open economy, where each sector’s production technology employs both
domestic and imported intermediate goods that are imperfectly substitutable.

11We relax this assumption in Appendix A-1.
12According to our notation, the sum of elements in the i’th column of matrix Γ is equal to γi, the total intermediate

goods’ share of sector i.
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the expenditure minimizing price index for this given utility (ideal price index). It is easy to show

that P =
∏n
i=1 (pi)

βi .13

Finally, the total supply of capital and labor are exogenous and fixed at the levels of K and 1,

respectively, implying that all aggregate variables can be interpreted in per-worker terms:

n∑
i=1

ki = K, (4)

n∑
i=1

li = 1. (5)

To complete the description of the model, we provide a formal definition of a competitive equi-

librium.

Definition A competitive equilibrium is a collection of quantities qi, ki, li, ci, dij , Y and prices pi,

P , w, and r for i ∈ 1 : n such that

1. {ci}i∈1:n solve the utility maximization problem of a consumer subject to the budget constraint∑
i pici = w + rK, taking prices {pi}, w and r as given.

2. {dij}, ki, li solve the profit maximization problem of the representative firm in each perfectly

competitive sector i for i ∈ 1 : n, taking {pi} of all goods and prices of labor and capital, w

and r, as given (Λi is exogenous).

3. Markets clear:

(a) capital market clearing:
∑n

i=1 ki = K,

(b) labor market clearing:
∑n

i=1 li = 1,

(c) market clearing in sector i: ci +
∑n

j=1 dij = qi, for i = 1, ..., n− 1.

4. Numeraire: P =
∏n
i=1 (pi)

βi = 1.

5. Definition of real GDP per worker: Y =
∑n

i=1 pici = u.

The choice of the aggregate consumer price index P as numeraire converts nominal consumption

expenditure into utility. Since consumption expenditure equals GDP per worker (total value added),

we obtain that real GDP per worker Y is equal to utility: Y =
∑n

i=1 pici = u. We take it as our

welfare measure.

13Indeed, the solution of minci
∑
i pici s.t.

∏n
i=1

(
ci
βi

)βi
= u is ci = βiu

∏
j 6=i

(
pj
pi

)βj
. Then

∑
i pici = P · u.
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2.2 Equilibrium

The system of optimality conditions for the utility and profit maximization problems together with

the market clearing conditions can be solved analytically and lead to an explicit expression for

welfare in terms of exogenous variables. The following proposition characterizes the equilibrium

value of the logarithm of real GDP per worker.

Proposition 1. There exists a unique competitive equilibrium. In this equilibrium, the logarithm

of real GDP per worker, y = ln (Y ), is given by

y =

n∑
i=1

µiλi︸ ︷︷ ︸
aggregate log TFP

+α lnK, (6)

where

µ = {µi}i = [I − Γ]−1β, n× 1 vector of multipliers

λ = {λi}i = {ln Λi}i, n× 1 vector of sectoral log-productivity coefficients

Proof. The proof of Proposition 1 is provided in the Appendix.

Due to the Cobb-Douglas structure of our economy, log real GDP per worker can be represented

by an aggregate log-linear production function akin to the one used in standard development ac-

counting (see, e.g., Caselli, 2005). It depends in a log-linear fashion on (i) aggregate TFP and (ii)

the capital share in GDP α multiplied by the log capital stock per worker. In contrast to standard

development accounting, aggregate log TFP is not a blackbox but instead depends on the underlying

(exogenous) economic structure. It is given by a weighted sum of sectoral log TFPs λi with sectoral

IO multipliers µi as weights. Thus, the impact of each sector’s productivity on aggregate output

is proportional to the value of the sectoral IO multiplier µi. This means that the positive effect of

higher sectoral productivity on aggregate value added is stronger in sectors with larger multipliers.

Moreover, IO linkages always (weakly) amplify sectoral productivities. Indeed, in a model without

IO structure, where all elements of the IO matrix Γ are zero, each sector’s multiplier is equal to its

expenditure share βi. It is easy to show that µi ≥ βi for all i.14

The vector of sectoral multipliers is determined by the features of the IO matrix through the

Leontief inverse,15 [I − Γ]−1, and the vector of expenditure shares β. A typical element lji of the

14The latter follows from the definition of sectoral multipliers, as will be immediately clear from equation (7).
Equation (7) also implies that the inequality µi ≥ βi is strict whenever sector i provides inputs to at least one sector
with a positive expenditure share. This makes the i’th element of (Γ)k β positive for k ≥ 1.

15Observe that in this model the Leontief inverse matrix is well-defined since CRS technology of each sector implies
that γi < 1 for any i ∈ 1 : n. According to the Frobenius theory of non-negative matrices, this means that the
maximal eigenvalue of Γ is bounded above by 1. This, in turn, implies the existence of [I − Γ]−1.
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Leontief inverse can be interpreted as the percentage increase in the output of downstream sector

i following a one-percent increase in productivity of upstream sector j.16 Intuitively, an increased

productivity of sector j raises its output and leads to more intermediate inputs for the using sectors

downstream, which raises their output and so on, until sector i is reached and its output increases.

Multiplying the Leontief inverse by the vector of expenditure shares β adds up the effects of sector

j on all the other sectors in the economy, weighting each using sector by its share βi in aggregate

valued added.17 Thus, a typical element of the resulting vector of IO multipliers reveals how a

one-percent increase in productivity of sector j affects the overall value added in the economy.

The vector of sectoral multipliers can be written as

µ = [I − Γ]−1β =

(
+∞∑
k=0

Γk

)
β = β + Γβ + (Γ)2β + ... (7)

where the jth element of µ is the sector-j multiplier. Each sectoral multiplier is an infinite sum:

the first term βj is the direct impact of a shock to sector j on aggregate value added. Thus, ceteris

paribus, sectors with higher expenditure shares have larger multipliers. The other terms of the

infinite sum correspond to effects that travel through the IO network. In particular, the first-order

term is the direct impact of the sector-j shock on the using sectors:
∑n

i=1 γjiβi is a weighted average

of the i = 1, .., n using sectors’ cost shares γji for sector j’s output, with weights corresponding to

the expenditure shares of the using sectors. Thus, sectors whose output is more important as an

input of all other sectors have larger sectoral multipliers. The higher-order terms correspond to the

indirect effects of productivity shocks: e.g., if sector j supplies to k which in turn supplies to l,

the second-order effect of raising productivity in sector j is the impact on l (and all other sectors

indirectly linked to j): j’s productivity shock increases the output of the downstream sector k and

hence raises the output in sector l, which uses k’s output as an input. The multiplication with βl

converts the increase in output of sector l into value added.

Let us now rewrite the log of real income per worker as follows:

y =
n∑
i=1

λiµi + α ln(K) = n

(
1

n

n∑
i=1

λi ·
1

n

n∑
i=1

µi

)
+ nCov(λ, µ) + α ln(K) =

= λ̄
n∑
i=1

µi + nCov(λ, µ)︸ ︷︷ ︸
aggregate log TFP

+α ln(K), (8)

where λ̄ = 1/n
∑n

i=1 λi is the arithmetic average of sectoral log TFPs,
∑n

i=1 µi is the aggregate

multiplier, corresponding to the sum of sectoral multipliers, and Cov(λ, µ) is the covariance between

16In general, sectoral shocks also affect upstream production through a price and a quantity effect. For instance,
with a negative shock to a sector, (i) its output price increases, raising its demand for inputs; and (ii) its production
decreases, reducing its demand for inputs. With Cobb-Douglas production technologies, however, these two effects
cancel out.

17In a closed economy expenditure shares are equal to the value-added shares.
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sectoral log TFPs and multipliers within a given country. In this formulation, it is explicit that the

effect of the IO structure on aggregate log TFP has two components. The first component, captured

by λ̄
∑n

i=1 µi, reflects the aggregate-multiplier effect. It has been studied in the literature (see, e.g.,

Jones, 2011 a,b) and shows the elasticity of aggregate real income with respect to average sectoral

TFP. Since
∑n

i=1 µi is larger than unity, average sectoral TFP is amplified, capturing propagation

through the IO network. Higher average TFP makes all downstream sectors more productive, which

in turn increases the productivity of their using sectors, etc.

Note also that aggregate multipliers and average sectoral TFP levels are log supermodular: a

given aggregate multiplier increases real income by more when average TFP is larger. This implies

that if aggregate multipliers do not vary systematically by income level (or when they are lower in

poor countries) and if average TFP is higher in rich countries, then aggregate multipliers amplify

average TFP of rich countries by more. Consequently, relatively modest average TFP variation

across countries may translate into large differences in real income per worker.

The second component, captured by nCov(λ, µ), is the covariance effect of the IO structure. It

reflects that if productivity tends to be higher than average in precisely those sectors that have high

multipliers (log TFP levels and multipliers are positively correlated), then the overall effect of the IO

structure on aggregate TFP is larger than the aggregate multiplier effect. In this case, income per

worker increases by more because sectors that are particularly productive pass on their relatively

high productivity levels to a particularly large number of downstream sectors by providing them

with cheap inputs. By contrast, if log TFP levels and multipliers are negatively correlated, then

the overall effect of the IO structure is dampened relative to the aggregate multiplier effect. In this

case, sectors with high multipliers have below-average productivity levels, and this reduces income

per worker because key inputs to downstream sectors are expensive. Thus, while the aggregate

multiplier effect always leads to amplification of sectoral productivities, the covariance effect may

either strengthen or weaken that effect.

To conclude the discussion in this section, it is instructive to compare our model with one where

sectoral productivity is defined to augment primary production factors rather than all factors. It

is easy to show that the predictions of both models for aggregate income per capita and aggregate

log TFP are identical, though the split of aggregate log TFP into average TFP times aggregate

multiplier and the covariance between sectoral TFPs and multipliers is not the same. Indeed, let

qi =

(
1

(1− γi)
Λ̃ik

α
i l

1−α
i

)1−γi (d1i
γ1i

)γ1i (d2i
γ2i

)γ2i
· ... ·

(
dni
γni

)γni
,

so that the primary-factor-augmenting TFP Λ̃i and the Hicks-neutral TFP Λi are related by Λi =

Λ̃1−γi
i . The log of real income per worker in this model can be written as y =

∑n
i=1 µ̃iλ̃i + α lnK,
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where sectoral multipliers are equal to µ̃i ≡ (1− γi)µi and λ̃i = ln Λ̃i = 1
1−γiλi. Thus, µ̃iλ̃i = µiλi,

and the expression for aggregate income per capita turns out to be the same as in Proposition

1. At the same time, the decomposition of aggregate log TFP in the model with primary-factor-

augmenting TFP is, in general, not the same as in the model with Hicks-neutral TFP. For the former,∑
i µ̃i = 1, so the aggregate multiplier equals unity by construction and the aggregate-multiplier

effect is absent. Instead, the average log TFP itself is larger in this model (because λ̃i > λi for

all i). Similarly, the covariance effect nCov(λ̃, µ̃) can be different, too, due to the difference in the

definitions of λi and λ̃i, µi and µ̃i.

2.3 Conceptual Issues of Cross-country Welfare Comparisons

Recall from Section 2.1 that expenditure-based real GDP per worker Ys of each country s = 1, ...,m

conceptually corresponds to an empirical measure of utility of consumers in this country: Ys = us

where us =
∏
i(
cis
βis

)βis . However, when consumers residing in different countries do not have the

same utility function, welfare comparisons across countries become a tricky issue because cardinal

utility comparisons across agents who do not share a common utility function are not meaningful.

In fact, in order to measure the utility a country-s consumer would get from residing in country k,

we would need to deflate the expenditure of country k with the country-s consumer’s optimal price

index.18 With m countries this procedure would give a different set of welfare levels (real GDPs)

for each utility function (m different measures of real GDP for each country) whose ranking across

countries is not necessarily the same.

Faced with this problem, we need to abandon the possibility of preference heterogeneity across

countries and construct instead an artificial reference consumer as an average of the individual

countries’ consumers.19 Of course, this leads to a discrepancy between the actual and constructed

expenditure shares in each country and hence, will not allow fitting the data perfectly. However,

we believe that this is an acceptable price to pay for making cross-country welfare comparisons

possible, which is a key goal of this paper. Moreover, we show that our results are not sensitive to

the precise way of constructing the preferences of the reference consumer.

In defining this reference consumer, it seems reasonable to give consumers in each country the

same weight. We thus use, alternatively, the arithmetic β∗ = 1/m
∑

s βs and the geometric average

18To give an example, suppose there are two countries, Italy and Germany. Italians care more about food than
about cars CI = c1/3f2/3, while for Germans it’s the other way round CG = c2/3f1/3. Assume that Germany produces
3 cars and 2 tons of food, and Italy 3 tons of food and 2 cars. Then the utility of Germans residing in Germany
CGG = 32/321/3, which equals the utility of Italians residing in Italy CII . If we want to compare welfare across
countries, we would need to evaluate Germans’ utility if they resided in Italy, UGI = 22/331/3 < UGG (Germans
don’t care that much about food) and the utility Italians would derive from living in Germany UIG = 22/331/3 < UII
(Italians don’t care that much about cars).

19In the Italian-German example above, a reference consumer has the utility function that equals an average of the
preferences of each country: Ur = c1/2f1/2. This reference consumer would be indifferent between living in Germany
and living in Italy since UrG = 31/221/2 = UrI = 21/231/2.
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β∗ =
∏
s β

1/m
s of the expenditure shares βs across countries. This means that the expenditure

share allocated to each given sector corresponds to the cross-country average of the expenditure

shares for this sector. The so-defined β∗ determines the preferences of the reference household and

is used to construct multipliers µ = [I − Γ]−1β∗.20 Observe that the Penn World Table also uses

implicitly the concept of a reference consumer when constructing PPP price indices of GDP with

the Geary-Khamis methodology.21 The Geary-Khamis approach uses each country’s quantities as

weights and thus gives more weight to consumers from larger economies. To match this approach,

as a third alternative, we also use a quantity-weighted average of countries’ expenditure shares to

compute the expenditure shares of the reference consumer. In this average, the weight of each

country corresponds to its share in world’s expenditure for sector i.

2.4 Decomposing Variation in Real GDP per Worker

Recall from Section 2.2 that our model generates the following expression for the log of real income

per worker of a given country:

ymodel =
n∑
i=1

λiµi + α ln(K) = λ̄
n∑
i=1

µi + nCov(λ, µ) + α ln(K) (10)

For a reference household with preferences u =
∏n
i=1

(
ci
β∗i

)β∗i
the vector of multipliers in this ex-

pression employs expenditure shares β∗: µ∗ = [I − Γ]−1β∗.

Next, we would like to decompose the variation of log GDP per worker generated by the model

into the various components of (10). Since the terms on the right-hand side are correlated, there

exists no unique variance decomposition. A convenient way to decompose the variance of log GDP

per worker is to use regressions. In particular,22

V ar(ymodel) = Cov(
n∑
i=1

λiµi, ymodel) + Cov[α ln(K), ymodel] (11)

= Cov(λ̄
n∑
i=1

µi, ymodel) + Cov[nCov(λ, µ), ymodel] + Cov[α ln(K), ymodel]

20To theoretically rationalize our approach of using average expenditure shares, we could assume that consumers in
each country have a common utility function but that actual expenditure shares correspond to expected expenditure
shares plus a random preference shock with mean zero. One could then use expected utility as a welfare measure. In
this case (log-)utility is given by

lnu =
∑
i

(β∗i + εi) ln(ci)−
∑
i

β∗i ln(β∗i ), (9)

where E(εi) = 0. The reference household maximizes expected utility E(lnu) =
∑
i β
∗
i ln(ci) −

∑
i β
∗
i ln(β∗i ), where

β∗i is the expected expenditure share of sector i.
21See Feenstra et al. (2015) for a description of the the price indices used in the Penn World Table and Diewert (1999)

for an in-depth discussion of the relationship between different methodologies for international price comparisons and
the existence of a reference consumer.

22We use V ar(X) = Cov(X,X) and Cov(X + Y,Z) = Cov(X,Z) + Cov(Y,Z).
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Thus,

1 =
Cov(

∑n
i=1 λiµi, ymodel)

V ar(ymodel)
+
Cov[α ln(K), ymodel]

V ar(ymodel)
(12)

=
Cov(λ̄

∑n
i=1 µi, ymodel)

V ar(ymodel)
+
Cov[nCov(λ, µ), ymodel]

V ar(ymodel)
+
Cov[α ln(K), ymodel]

V ar(ymodel)

This decomposition is equivalent to looking at the coefficients obtained from independently regress-

ing each term on the right-hand side of (10) on ymodel. Since the terms on the right-hand side of

(10) sum to ymodel and OLS is a linear operator, the coefficients sum to one. So the decomposition

amounts to asking, “When we see a one percent higher ymodel in one country relative to the average

of the countries in the sample, how much higher is our conditional expectation of α lnK, how much

higher is our conditional expectation of λ̄
∑n

i=1 µi, and how much does our conditional expectation

of nCov(λ, µ) change?”

2.5 Measuring Sector-specific Productivity

By our assumption, production functions in a given sector vary across countries due to differences

in the importance of sectoral linkages – the γjis vary across countries for a given sector-pair ij.

Computing a measure of productivity (TFP) that is comparable across countries when countries

have different production functions in a given sector is methodologically challenging. A set of basic

requirements for TFP comparisons across countries is the following: (i) the productivity measure

should be unique when holding constant the reference country; (ii) it should be invariant to changes

in units; (iii) it should be transitive, i.e., computing the productivity of country j relative to l

should give the same number as the one obtained by first comparing j to k and then k to l.

To provide an example for this problem, note that just taking ratios of outputs and inputs for a

given pair of countries – like in the development-accounting literature (e.g. Caselli, 2005 ) – is not

invariant to changes in units when the two countries have different output elasticities of inputs.

Thus, productivity of any two countries in a given sector has to be compared while holding the

production function constant. But this raises another problem: productivities can be computed

with the production function of country k, the one of country l or the one of any other country.

With m countries, this gives m productivity measures for a given country-sector pair, and thus, the

so-obtained productivity is not unique. To address these problems, we borrow the approach from

Caves, Christensen and Diewert (1982) who have devised a methodology that satisfies requirements

(i)-(iii) for translog production functions. Since Cobb-Douglas is a special case of the translog
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function when the second-order terms are zero,23 we can use their methodology and adapt it to our

special case, so as to derive our measure of sector-specific productivity. The formal derivation is

relegated to the Appendix, while here we only provide the final result.

Without loss of generality, consider for simplicity the Cobb-Douglas technology with a composite

input Xis, qis = Λis

(
Xis
αXis

)αXis
, where i denotes a sector and s denotes a country. Then the

multilateral productivity index that represents log TFP of country k relative to country l in sector

i is given by:

lnλ∗ikl = ln qik − ln qil −
1

2
(αXik + αXi)(lnXik − lnXi) +

1

2
(αXil + αXi)(lnXil − lnXi), (13)

where αXi = 1
m

∑m
s=1 αXis, and lnXi = 1

m

∑m
s=1 lnXis.

Generalizing the production function to many inputs, and assuming (i) constant returns to scale

and (ii) perfect competition without distortions, we note that the output elasticities αXis correspond

to the cost shares {γji}j , αi and 1− αi of individual inputs. These can be directly taken from the

data: IO coefficients and sectoral factor shares in gross output. In our empirical application, we

will take the U.S. as the reference country (l = U.S.). Thus, the resulting set of productivity indices

{lnλ∗isl} will represent log TFP of each country s ∈ 1 : m relative to the U.S. in each sector i ∈ 1 : n.

3 Dataset and Descriptive Analysis

3.1 Data Sources and Description

IO tables measure the flow of intermediate products between different plants, both within and

between sectors. The ji’th entry of the IO table is the value of output from establishments in

industry j that is purchased by different establishments in industry i for use in production.24

Dividing the flow of industry j to industry i in the IO table by gross output of industry i, one

obtains the IO coefficient γji, which states the cents of industry j’s output used in the production

of each dollar of industry i’s output.

In order to construct a dataset of IO tables for a range of low- and high-income countries,

to compute sectoral TFP levels, and to obtain information on countries’ GDP per worker and

factor endowments, we combine information from two datasets: the World Input-Output Database

(WIOD), February 2012 release (Timmer, 2012), and the Penn World Table (PWT), Version 8.0

23In general, the translog production function for an economic entity (country or sector) s that produces the vector
of outputs {qsk}Kk=1 using the vector of inputs {Xs

i }ni=1 can be written as

αs0 +
J∑
j=1

αsj ln qsj +
n∑
i=1

βsi lnXs
i + 2nd order terms = 1.

24Note that intermediate outputs must usually be traded between establishments in order to be recorded in the IO
tables. Therefore, flows that occur within a given plant are not measured.
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(Feenstra et al., 2015).

The first dataset, WIOD, contains IO data and sectoral socio-economic accounts for 38 countries

classified into 35 sectors. We use WIOD data for the year 2005 because for this year we have PPP

price indices. The list of countries and sectors is provided in Appendix Tables A-1 and A-2.25

WIOD IO tables are available in current national currency at basic prices.26 In our main

specification, we compute IO coefficients as the value of domestically produced plus imported inter-

mediates divided by the value of gross output at basic prices.27 Sectoral multipliers are computed

as µ = {µi}i = [I − Γ]−1β∗. The WIOD data also contain all the necessary information to com-

pute gross-output-based sectoral total factor productivity for 35 sectors: nominal gross output and

material use, sectoral capital stocks and labor inputs, sectoral factor payments to labor, capital

and intermediates disaggregated into 35 inputs. Crucially, WIOD also provides purchasing power

parity (PPP) deflators (in purchasers’ prices) for sector-level gross output for the year 2005 that

we use to convert nominal values of outputs and inputs into real units that are comparable interna-

tionally. This allows us to compute TFP levels at the sector level using the methodology explained

above.28 The PPP deflators have been constructed by Inklaar and Timmer (2012) and are consis-

tent in methodology and outcome with the PWT 8.0. They combine expenditure prices and levels

collected as part of the International Comparison Program (ICP) with data on industry output,

exports and imports and relative prices of exports and imports from Feenstra and Romalis (2014).

The authors use export and import values and prices to correct for the problem that the prices of

goods consumed or invested domestically do not take into account the prices of exported products,

while the prices of imported goods are included. To our knowledge, WIOD combined with these

PPP deflators is the best available cross-country dataset for computing sector-level productivities

using production data.

The second dataset, PWT, includes data on real GDP in PPP, the number of workers, as well

as information on aggregate PPP price indices for exportables and importables for the same set

of countries as WIOD in the year 2005. Our main measure of real GDP is RGDPE, real GDP in

PPP prices computed from the expenditure side. This measure is most appropriate to compute

welfare-relevant real GDP because it measures differences in the standard of living across countries

(Feenstra, et al., 2015). Alternatively, we have used RGDPO, real GDP in PPP prices computed

25We drop Indonesia from the sample because the data reported by WIOD for this country are problematic.
26Basic prices exclude taxes and transport margins.
27In a robustness check, we separate domestically produced from imported intermediates and define domestic

IO coefficients as the value of domestically produced intermediates divided by the value of gross output, while IO
coefficients for imported intermediates are defined as the value of imported intermediates divided by the value of gross
output. We show in the robustness section that this choice does not affect our results .

28The WIOD data comprise socio-economic accounts that are defined consistently with the IO tables. We use
sector-level data on gross output and physical capital stocks in constant 1995 prices, the price series for investment,
and labor inputs (employment). Using the sector-level PPPs for gross output, we convert nominal gross output and
inputs into constant 2005 PPP prices. Furthermore, using price series for investment from WIOD and the PPP price
index for investment from PWT, we convert sector-level capital stocks from WIOD into constant 2005 PPP prices.
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from the production side. This variable measures the production capacity of each country. For our

sample, the difference between these measures is negligible and our results are basically identical

with both measures. To construct aggregate physical capital stocks and employment of each country,

we add up the sectoral capital stocks and employment numbers from WIOD. Results are very similar

if information on the number of workers and capital stocks is instead taken directly from the PWT.

We prefer aggregating information from WIOD since this guarantees that the sectoral values are

consistent with the aggregate values. Finally, we use aggregate price indices for exports and imports

in the open-economy extension of our model, which we discuss in a robustness check.

3.2 Descriptives of IO Structure

We now provide some descriptive statistics of IO structure, as summarized by the distributions of

sectoral multipliers. We report these statistics by income level, classifying countries with a per-

capita GDP of less than 5000 PPP Dollars as low-income, those with 5,000-20,000 PPP Dollars as

medium-income, and those with more than 20,000 PPP Dollars as high-income. Figure 1 reports

kernel density plots of the distribution of multipliers pooled across countries and sectors. For all

income levels, the distributions are skewed with a long right tail: while most sectors have low

multipliers, there are a few high-multiplier sectors. In addition, low-income countries’ distribution

has more mass in the right tail.29 Table 1 reports moments of the distribution of multipliers.

The mean sectoral multiplier is 0.057, the median multiplier is 0.049, and the 95th-percentile of

multipliers is 0.133. In Appendix Figure A-1, we plot average multipliers by sector.30

Sample Mean Std. 5th Pct. 10th Pct. Median 90th Pct. 95th Pct.

all 0.057 0.042 0.003 0.011 0.049 0.112 0.133
low income 0.061 0.400 0.006 0.011 0.057 0.115 0.143
med income 0.057 0.039 0.004 0.011 0.049 0.110 0.130
high income 0.056 0.045 0.003 0.011 0.049 0.116 0.136

Table 1: Summary statistics of sectoral IO multipliers.

3.3 Descriptives of TFP

Next, we report descriptive statistics of sectoral TFP levels. Figure 2 provides kernel density plots of

sectoral log TFP relative to the U.S. by income level. The distribution of log TFP is approximately

normal. Moreover, low-income countries have a distribution of log TFPs with a significantly lower

mean and a larger variation across sectors than high-income countries. Table 2 reports means and

29In the working paper version, we also report descriptive statistics for GTAP data, which comprises a larger sample
and includes many more low-income countries. These features of the multipliers’ distribution also hold in the larger
GTAP sample and are even more pronounced.

30The high-multiplier sectors in all countries are mostly service sectors such as Business Services, Real Estate,
Financial Services, Wholesale Trades that provide inputs to most other sectors of the economy.
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Figure 1: Distribution of sectoral IO multipliers by income level.

standard deviation of log TFP relative to the U.S., as well as the within-country correlation between

log TFPs and multipliers. While in low-income countries mean TFP is around 60 percent of the

U.S. level (0.6=exp(-0.517)), with a large standard deviation across sectors, mean sectoral TFP

in high-income countries is around 90 percent of the U.S. level (0.9=exp(-0.104)) with much less

dispersion across sectors. Interestingly, in low-income countries, log TFP levels of high-multiplier

sectors are above their average TFP level relative to the U.S. (the correlation between log TFPs and

multipliers is positive), while in rich countries log TFP levels are below average in high-multiplier

sectors (the correlation between log TFPs and multipliers is negative).

Sample Obs. Mean Std. Corr.
log TFP log TFP log TFP, mult.

(within) (within)

all 1,295 -0.206 0.413 -0.060**
low income 70 -0.517 0.676 0.363***
mid income 490 -0.316 0.475 -0.015
high income 735 -0.104 0.347 -0.224***

Table 2: Summary statistics of sectoral log TFPs. *** (**) indicates statistical significance at the 1-percent
(5-percent) level.

4 Empirical Analysis

We now decompose the variation of log real GDP per worker generated by the model into its

different components and compare it to the data. In the calibration we set the capital share in GDP

to α = 1/3, as standard in the development accounting literature (see Caselli, 2005). Moreover,
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Figure 2: Distribution of log TFP by income level

we set n, the number of sectors, equal to 35 because this corresponds to the number of sectors

in WIOD. We first present plots of each of the components on the right-hand side of equation

(10) against log real GDP per worker (relative to the U.S.). Figure 3 plots α lnK against log

real GDP per worker relative to the U.S., while Figure 4 plots λ̄, mean log TFP relative to the

U.S. of each country, against log real GDP per worker. Not surprisingly, both capital stock per

worker and average log TFP levels are strongly positively correlated with log GDP per worker.

Figure 5 presents a similar plot for aggregate IO multipliers
∑n

i=1 µi. Aggregate multipliers are

close to 2 for most countries, which implies that countries’ average TFP levels are substantially

amplified. It is true that aggregate multipliers tend to be a bit larger in poor countries, reaching

a level of 2.49 in China (CHN), but the relationship between aggregate multipliers and income

per worker is quite weak and not statistically significant. There are also some low-income countries

with low aggregate multipliers, such as Brazil (BRA) and India (IND). Since there are no systematic

differences between aggregate multipliers of rich and poor countries, not only average TFP levels

of individual countries but also cross-country differences in average TFP levels are substantially

amplified (more on this below). Finally, Figure 6 plots the within-country covariance between log

TFP and multipliers Cov(λ, µ) against log real income per worker: this relationship is strongly

negative. While low-income countries, such as China and India, tend to have higher than average

TFP levels in high-multiplier sectors, in rich countries, sectors with high multipliers tend to have

below-average TFP levels. This implies that the covariance term tends to mitigate TFP differences

across countries: the income of poor countries is increased due to the amplified impact of their

high-productivity sectors, and the reduced impact of their low-productivity sectors. The opposite is
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the case in high-income countries, whose low-productivity sectors pull down their aggregate income

due to amplification via high multipliers.

Next, we quantify the ability of the model to generate cross-country income variation. While the

model can hopefully explain a large part of the variation in GDP per worker across countries, it will

certainly not be able to fit the data perfectly because final expenditure shares β∗ and the capital

share in GDP α are assumed to be identical across countries. As explained above, the assumption of

identical β∗ is necessary to make real income generated by the model comparable across countries,

while the assumption of homogeneous α is imposed for simplicity and will be relaxed in a robustness

check (see Appendix A-1).

Column (1) of Table 3 compares the variance of log GDP per worker generated by the model with

the one in the data according to V ar(ymodel)
V ar(ydata)

. In columns (2) - (3) the model-generated variance of log

GDP per worker is decomposed using the relationship
Cov(

∑n
i=1 µiλi,ymodel)

V ar(ymodel)
+ Cov(α ln(K),ymodel)

V ar(ymodel)
= 1.

The first row reports results for the case when β∗ is defined by an arithmetic average of countries’

expenditure shares, the second row reports the results for the geometric average and the third one

for a weighted average where the weights correspond to each country’s produced quantities.

Table 3: Variance decomposition of log real GDP per worker – baseline model

share of
V ar(ymodel) explained

by variation in
V ar(ymodel)
V ar(ydata)

α lnK
∑n

i=1 µiλi

baseline, arithmetic mean 0.90 0.48 0.52
baseline, geometric mean 0.88 0.49 0.51
baseline, weighted mean 0.92 0.47 0.53

no linkages, arithmetic mean 0.68 0.74 0.26
no linkages geometric mean 0.67 0.75 0.25
no linkages, weighted mean 0.71 0.70 0.30

The model with the arithmetic-average expenditure shares explains 90% of the variance of log GDP

per worker in the data. The model variance can be split into 48% due to variation in capital per

worker and 52% due to variation in aggregate TFP (
∑n

i=1 µiλi). The model with β∗ computed as

geometric average gives similar results and attributes 49% of income variation to physical production

factors and 51% to aggregate TFP. Finally, when β∗ is computed as a quantity-weighted average,

the split of income variation between physical production factors and TFP also remains similar.

The rough 50-50 split of cross-country income variation into physical production factors and

aggregate TFP corresponds to the standard result in the development accounting literature.31 This

is reassuring, since our model has exactly the same aggregate production function as in standard

development accounting. Crucially, rather than treating aggregate TFP as a residual, our model

31Indeed, for our sample V ar(αlogK)
V ar(ydata)

= 0.49.
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helps us to understand how the observed aggregate TFP differences emerge from the interaction

between micro-level (sectoral) TFP variation and the IO structure.

To see to what extent sectoral TFP differences are amplified by IO structure, we compare our

model with one without linkages in which sectoral multipliers correspond to expenditure shares βi

and aggregate TFP is given by
∑

i βiλi. Rows (4)-(6) of Table 3 present results for this model.

First, it explains only around 70% of income variation observed in the data compared to 90% for

the model with IO structure. Moreover, it attributes only 25-30% of the model-generated income

variation to aggregate TFP differences and the remainder is attributed to variation in physical

production factors, which is not in line with the 50-50 split that we would expect from development

accounting. Thus, without amplification from linkages the fundamental sector-level TFP differences

across countries are too small to generate the substantial aggregate TFP and income differences

that we observe.

Let us now investigate the role of IO structure in determining aggregate TFP differences in more

detail. Table 4 presents the disaggregation of aggregate TFP variation into variation in λ̄
∑n

i=1 µi

and variation in nCov(λ, µ).

Table 4: Variance decomposition of log real GDP per worker in detail – baseline model

share of V ar(ymodel) explained
by variation in∑n

i=1 µiλi λ̄
∑n

i=1 µi nCov(λ, µ)

Hicks-neutral TFP, arithmetic mean 0.52 0.60 -0.08
Hicks -neutral TFP, geometric mean 0.51 0.61 -0.10
Hicks-neutral TFP, weighted mean 0.53 0.58 -0.05

factor-augmenting TFP, arithmetic mean 0.52 0.73 -0.21
factor-augmenting TFP, geometric mean 0.51 0.75 -0.24
factor-augmenting TFP, weighted mean 0.53 0.71 -0.18

The 51-53% of income variation due to aggregate TFP differences in the baseline model with

arithmetic-mean expenditure shares can be further split into variation in the product of average

sectoral log TFP and aggregate multipliers and variation in the covariance term between sectoral

log TFPs and multipliers. On the one hand, large aggregate multipliers of around 2 (uncorrelated

with countries’ income per worker) amplify average sectoral TFP differences substantially. On the

other hand, the negative contribution to income differences of the covariance term significantly

mitigates this amplification. For our baseline model with Hicks-neutral TFP, presented in rows 1

to 3, the magnitude of the negative covariance term implies that if poor countries did not have

above average productivity levels and rich countries did not have below average productivity levels

in high-multiplier sectors, variation in GDP per worker across countries would be up to 10% larger

than it actually is. When considering instead primary-factor-augmenting TFP variation (rows 4 to

6), the contribution of the covariance term in compressing income variation is even larger. Without
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it, cross-country income differences would be up to 24% larger. Note that poor countries have a

large variance of relative TFP levels across sectors compared to rich countries. The impact of ex-

tremely low TFP levels in some of their sectors is mitigated by the fact that these sectors have low

multipliers, i.e., they are not very connected to the rest of the economy. At the same time, those

sectors that are particularly important for other sectors (high-multiplier sectors) have above-average

productivity levels, which boosts aggregate income. By contrast, in most rich countries (Western

Europe and Japan), TFP levels relative to the U.S. are lower than average in high-multiplier sectors,

which significantly reduces their real GDP per worker.

Figure 3: α ln(K) vs. log income per worker rel. U.S.
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Figure 4: λ̄ vs. log income per worker rel. U.S.

Figure 5: aggregate IO multiplier
∑n

i=1 µi vs. log income per worker rel. U.S.
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Figure 6: n ∗ Cov(λ, µ) vs. log income per worker rel. U.S.

5 Extensions and Robustness Checks

In this section, we report the results of a number of extensions and robustness checks order to show

that our results do not hinge on the specific assumptions adopted in the model. We consider the

following modifications of our baseline setup. First, we allow IO multipliers to depend on implicit tax

wedges or distortions. Second, we account for imported intermediate inputs. Third, we extend our

model to sectoral CES production functions. Finally, in the last two robustness checks presented in

the Appendix, we allow capital shares to be sector-country-specific and we treat skilled and unskilled

labor as separate production factors. We show that none of these modifications changes the basic

conclusions of the baseline model.

5.1 Wedges

One important concern is that the empirically observed IO coefficients do not just reflect tech-

nological input requirements but also sector-specific distortions or wedges τi in the production of

intermediates. To see this, consider the following maximization problem of an intermediate pro-

ducer:

max
{dji,ki,li}

(1− τi)piΛi
(

1

1− γi
kαi l

1−α
i

)1−γi (d1i
γ1i

)γ1i (d2i
γ2i

)γ2i
· ... ·

(
dni
γni

)γni
−

n∑
j=1

pjdji − rki − wli,

where prices {pi}, r and w are taken as given (τi and Λi are exogenous). Sector-specific wedges

are assumed to reduce the value of sector i’s production by a factor (1− τi), so that τi > 0 implies

an implicit tax and τi < 0 corresponds to an implicit subsidy on the production of sector i. The
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first-order condition w.r.t. dji is given by

(1− τi)γji =
pjdji
piqi

, j ∈ 1 : n

Thus, a larger wedge in sector i implies lower observed IO coefficients in this sector since firms in

sectors facing larger implicit taxes demand less inputs from all other sectors. Separately identifying

wedges τi and technological IO coefficients γji is an empirical challenge, which requires imposing

additional restrictions on the data. Observe that τi is the same for all inputs j demanded by a given

sector i. Thus, introducing a country index s and summing across inputs j for a given country, we

obtain

(1− τis)
∑
j

γjis ≡ (1− τis)γis =
∑
j

pjsdjis
pisqis

, i ∈ 1 : n

Now, if we restrict the total technological intermediate share of a given sector i, γis, to be the same

across countries, we can identify country-sector-specific wedges as

(1− τis) =
∑
j

pjsdjis
pisqis

1

γi
, i ∈ 1 : n (14)

Observe that individual IO coefficients γjis are still allowed to differ across countries in an arbitrary

way. According to equation (14), countries with below-average intermediate shares
∑

j
pjsdjis
pisqis

in a

certain sector face an implicit tax in this sector, while countries with above-average intermediate

shares receive an implicit subsidy. Taking logs of equation (14), we obtain:

ln

∑
j

pjsdjis
pisqis

 = ln(γi) + ln(1− τis) (15)

Now, given (15), we regress log intermediate input shares of each country-sector pair on a set of

sector-specific dummies to obtain estimates of the technological intermediate shares ln(γi). We then

back out ln(1− τis) as the residual, which hinges on the assumption that τis has zero mean across

countries. Average intermediate shares are slightly lower for low-income countries. Also, low-income

countries have a larger fraction of sectors with very low intermediate shares. Consequently, they

have a larger fraction of sectors with relatively high wedges, which corresponds to more mass in the

left tail of the distribution of ln(1 − τis). This is clear from Figure 7, which plots the distribution

of ln(1− τis) by income level for the WIOD sample. Given wedges τis, we construct IO coefficients

adjusted for wedges as γjis =
pjsdjis
pisqis

1
(1−τis) . We then use these adjusted coefficients to recompute

sectoral productivities and IO multipliers.

In the presence of wedges the expression for log GDP per worker also needs to be modified

since wedges distort decisions and thus reduce income per worker. In particular, there is now an
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Figure 7: Distribution of log(1-wedges) by income level

additional term
∑n

i=1 µi ln(1− τi). Higher distortions (lower values of ln(1− τi)) reduce income per

worker, especially if they occur in high-multiplier sectors.

Proposition 2. In the unique competitive equilibrium the logarithm of real GDP per worker, y, is

given by

y =
n∑
i=1

µiλi +
n∑
i=1

µi ln(1− τi)︸ ︷︷ ︸
aggregate log TFP

+α lnK, (16)

where

µ = {µi}i = [I − Γ]−1β∗, n× 1 vector of multipliers

λ = {λi}i = {ln Λi}i, n× 1 vector of sectoral log-productivity coefficients

τ = {τi}i, n× 1 vector of sectoral wedges

This expression can be further decomposed as:

ymodel = λ̄

n∑
i=1

µi + nCov(λ, µ)︸ ︷︷ ︸
productivity

+ ln (1− τ)

n∑
i=1

µi + nCov(ln(1− τ), µ)︸ ︷︷ ︸
distortions

+α ln(K) (17)

Aggregate log TFP now has a component capturing sectoral productivities and a component

stemming from distortions. This expression makes clear that both higher average wedges – cor-

responding to more negative values of ln (1− τ) – and a positive covariance between wedges and
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multipliers, implying nCov(ln(1−τ), µ) < 0, are detrimental to income. Intuitively, positive wedges

and thus, also positive average wedges, always reduce aggregate income per worker because they

distort the decision between intermediate input demand and final use. This detrimental impact

is further amplified by the aggregate multiplier
∑n

i=1 µi. In addition, when larger wedges occur

precisely in those sectors that have high multipliers, their negative effect on aggregate income is

particularly strong.

Figure 8 plots the term ln (1− τ)
∑n

i=1 µi against log GDP per worker. With the exception

of China, which provides large average production subsidies, poor economies tend to have large

implicit tax rates. Brazil, Greece (GRC), Mexico (MEX) and India are countries where average

distortions are particularly severe.

Figure 8: ln (1− τ)
∑n

i=1 µi vs. log income per worker rel. U.S.

Figure 9 plots the covariance of ln(1−τ) and multipliers µ against log GDP per worker: while rich

countries tend to have lower implicit taxes or even provide implicit subsidies to their high-multiplier

sectors, low-income countries tend to have high implicit taxes in these sectors.

Finally, let us consider a variance decomposition of model income similar to (11), with some

additional terms that account for the role of wedges. To start with, column (1) of Table 5 shows

that the model with wedges accounts for 89-94 percent of the income variation in the data. Then,

columns (2)-(8) present the various terms in the decomposition. We concentrate on the case where

the reference consumer’s expenditure shares are given by the arithmetic average of countries’ ex-

penditure shares (see row one), since the results for the other cases are very similar (see rows two

and three). Compared to the baseline model, the presence of wedges increases the role of aggregate

TFP differences in explaining the variance of model income significantly: now 40% of income vari-
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Figure 9: n ∗ Cov(ln(1− τ), µ) vs. log income per worker rel. U.S.

ation is due to variation in physical production factors and 60% due to variation in aggregate TFP

(compared to roughly 50-50 split for the baseline). The 60% due to aggregate TFP differences can

be further split into 44% due to variation in weighted sum of sectoral TFPs
∑
µiλi and 16% due to

variation in distortions
∑
µi ln(1 − τi). Thus, distortions account for roughly a third of aggregate

TFP variation. Finally, we can decompose the 44% of income variation due to sectoral TFPs into

50% due to average TFP variation amplified by average multipliers, and minus 6% mitigation due

to variation in the covariance between sectoral TFPs and multipliers. Hence, mitigation is quan-

titatively a bit smaller than in the baseline model. Similarly, the 16% of income variation due to

distortions can be decomposed as 10% due to variation in average distortions amplified by average

multipliers and 6 % due to variation in the covariance term between distortions and multipliers.

Thus, variation in both average distortions and their covariance with multipliers amplify income

differences.

Table 5: Variance decomposition of log GDP per worker – model with wedges

share of V ar(ymodel) explained by variation in
V ar(ymodel)
V ar(ydata)

α lnK
∑
µλ

∑
µ ln(1− τ) λ̄

∑
i µi nCov(λ, µ) ln(1− τ)

∑
µ nCov(ln(1− τ), µ)

arith. mean 0.91 0.40 0.44 0.16 0.50 -0.06 0.10 0.06
geo. mean 0.89 0.40 0.43 0.17 0.50 -0.07 0.11 0.05
w. mean 0.94 0.40 0.45 0.15 0.49 -0.04 0.10 0.05

5.2 CES Production Function

Another potential concern is that sectoral production functions are not Cobb-Douglas, but instead

feature an elasticity of substitution between intermediate inputs different from unity. If this were the
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case, IO coefficients would no longer be sector-country-specific constants γjis but would instead be

endogenous to equilibrium prices, which would reflect the underlying productivities of the upstream

sectors. While it has been observed that for the U.S. the IO matrix has been remarkably stable

over the last decades despite large shifts in relative prices (Acemoglu et al., 2012) – an indication of

a unit elasticity, – in this robustness check we briefly discuss the implications of considering a more

general CES sectoral production function. The sectoral production functions are now given by:

qi = Λi

(
1

1− γi
kαi l

1−α
i

)1−γi
Mγi
i , (18)

where Mi ≡
(∑N

j=1 γjid
(σ−1)
σ

ji

) σ
(σ−1)

. The rest of the model is specified as in section 2.1.

With CES production functions the equilibrium cannot be solved analytically, so one has to

rely on numerical solutions. However, it is straightforward to show how IO multipliers are related

to sectoral productivities in this case. From the first-order conditions it follows that the relative

expenditure of sector i on inputs produced by sector j relative to sector k is given by:

pjdji
pkdki

=

(
pj
pk

)1−σ (γji
γki

)
(19)

Thus, if σ > 1 (σ < 1), each sector i spends relatively more on the inputs provided by sectors

that charge lower (higher) prices. Recall that sectors whose output accounts for a larger fraction

of other sectors’ spending have higher multipliers (see equation (7)). Moreover, since prices are

inversely proportional to productivities, sectors with higher productivity levels charge lower prices.

Consequently, when σ > 1, sectoral multipliers and productivities should be positively correlated

in all countries, while when σ < 1, the opposite should be true. We confirm these results in

unreported simulations. However, these predictions are not consistent with our empirical finding

that multipliers and productivities are positively correlated in low-income countries, while they are

negatively correlated in high-income ones. Consequently – unless the elasticity of substitution differs

systematically across countries – the data on IO tables and sectoral productivities are difficult to

reconcile with CES production functions with Hicks-neutral productivity.

5.3 Traded Intermediate Goods

So far, we have treated all intermediate inputs as being domestically produced. Here, we extend

our model and differentiate between domestically produced and imported intermediate inputs, while

keeping the Cobb-Douglas structure of sectoral production functions. The technology of sector i is

now given by

qi = Λi

(
1

1− γi − σi
kαi l

1−α
i

)1−γi−σi
(
d1i
γ1i

)γ1i
· ... ·

(
dni
γni

)γni

·
(
f1i
σ1i

)σ1i

· ... ·
(
fni
σni

)σni

,
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where dji is the quantity of the domestic good j used in the production of sector i and fji is the

quantity of imported good j used by sector i. γi =
∑n

j=1 γji and σi =
∑n

j=1 σji are the respective

shares of domestic and imported intermediate goods in the total input use of sector i and α is the

share of capital in sectoral value added. We assume that output of sector i can be used either for

final consumption, ci, as a domestic intermediate input dij , or as an exportable xi:

qi = ci +
n∑
j=1

dij + xi i = 1 : n

We impose balanced trade, so that the value of exported intermediates must be equal to the value

of imported intermediates:
n∑
j=1

pjxj =

n∑
i=1

n∑
j=1

pjfji,

where pj is the domestic and export price of intermediate good j and pj is the import price of

intermediate good j. Because the domestic economy is assumed to be small, these prices are

exogenous. Let us denote by ρj =
pj
P the ratio of the import price of intermediate good j relative

to the aggregate consumer price index.32 Because we only have data on the aggregate import price

index from the Penn World Table, we assume that import prices do not vary across sectors: ρj = ρ.

In the Appendix, we show that with these modifications the aggregate production function for log

GDP per worker can be expressed as follows:

Proposition 3. In the unique competitive equilibrium, the logarithm of real GDP per worker, y, is

y =
1∑n

i=1 µi(1− σi − γi)

(
n∑
i=1

µiλi − ln ρ
n∑
i=1

µiσi

)
+ α lnK, (20)

where

µ = {µi}i = [I − Γ]−1β∗, n× 1 vector of multipliers

λ = {λi}i = {ln Λi}i, n× 1 vector of sectoral log-productivity coefficients

Γ = {γji}ji, n× n input-output matrix for domestic intermediates

σ = {σi}, n× 1 vector of imported intermediate shares

γ = {γi}, n× 1 vector of domestic intermediate shares

ρ relative price of imported intermediates

Compared to the baseline model, there are a few modifications. First, sectoral multipliers µ

depend only on the domestic IO coefficients γji, since foreign production is unaffected by changes

32We continue to normalize P to unity. In the empirical analysis we use the price index of imports relative to the
aggregate consumer price index, as provided in the data.
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in domestic productivity. Second, while
∑n

i=1 µi(1− γi) = 1 in the model with only domestic inter-

mediates, the new term
∑n

i=1 µi(1− σi − γi) is smaller than one,33 and this amplifies the effect of

sectoral multipliers µ. The intuition for this is as follows. What matters for the effect of multipliers

is not just the share of domestic intermediates γi but the total share of intermediates σi+γi. Indeed,

imported intermediates do not dilute multipliers because of our assumption of balanced trade: an

increase in productivity of a given sector increases exports, which in turn increases imports. Third,

income now depends negatively on ρ, the relative price of imported intermediates. When imported

intermediates become more expensive, GDP is reduced because an increase in their price acts effec-

tively as a negative supply shock. The magnitude of this effect depends on the weighted average of

imported intermediate shares σi, with multipliers µi as weights.

Figure 10 plots the new term − ln ρ
∑n

i=1 µiσi against log GDP per worker: poor countries have

a much higher relative price of imported intermediates, leading to a positive correlation between

this term and log GDP per worker.

Figure 10: −ln(ρ)
∑

i µiσi vs. log income per worker rel. U.S.

In Table 6 we report the results of our variance decomposition. It now has an additional

term which accounts for the effect of imported intermediates. We focus on the case of arithmetic-

average expenditure shares, since the other cases are very similar. The model explains 94% of the

variance of GDP per worker in the data, which is 4% more than the baseline model. The fraction

of model variance explained by variation in capital per worker (45%) is slightly smaller than in

the baseline model (48%). Variation in aggregate TFP (
∑
µiλi) now accounts for 45% of income

33Note that (a) this term is positive, and (b) by definition of multipliers,
∑
i µi(1−γi) = 1. Thus,

∑
i µi(1−γi−σi) =

1−
∑
i µiσi < 1.
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variation (compared to 52% in the baseline model), while variation in the term reflecting the price

of intermediates, − ln ρ
∑

i σiµi, increases the variance of GDP per worker across countries by an

additional 10%. This is due to the fact that for low-income countries the relative price of imports

is much higher than for rich countries, which depresses their GDP per worker significantly. The

45% of income variation explained by aggregate TFP can be further split into 56% due to variation

in aggregate multiplier times average productivity and -11% due to variation in the covariance

between sectoral TFPs and multipliers. Observe that the role of the covariance term is a bit larger

in absolute terms than in the baseline case.

Table 6: Variance decomposition of log GDP per worker – model with traded intermediates

share of V ar(ymodel) explained by variation in
V ar(ymodel)
V ar(ydata)

α ln(K) A
∑
µλ Aλ̄

∑
µ AnCov(λ, µ) −A ln ρ

∑
σµ

arith. mean 0.94 0.45 0.45 0.56 -0.11 0.10
geo. mean 0.91 0.47 0.43 0.56 -0.13 0.10
w. mean 0.97 0.44 0.46 0.54 -0.08 0.10

A = [
∑n
i=1 µi(1− σi − γi)]

−1

6 Counterfactual Experiments

We now present the results of a number of counterfactual experiments. We first investigate how

differences in TFP levels affect cross-country income differences before turning to the effects of

differences in IO linkages. For the first two counterfactuals we use our baseline model, while for the

third counterfactual we employ the model with wedges.

In our first counterfactual exercise we eliminate all TFP differences between countries by setting

all sectoral productivities equal to the U.S. level. The result of this experiment is shown in Figure

11. It plots the counterfactual percentage change in income per worker of each country against log

GDP per worker. As can be seen from the figure, virtually all countries would gain if they had

the U.S. TFP levels. While gains are relatively modest for most high-income countries, bringing

sectoral TFPs to U.S. levels would almost double income per worker in countries like China (CHN)

or Romania (ROU).

In the second counterfactual exercise, we hold sectoral productivity levels fixed and instead set

the covariance between multipliers and log productivities, Cov(µ, λ), to zero in all countries. Figure

12 makes clear that a number of low-income countries, such as India and China would lose more than

15% of their income, with a number of Eastern European countries, like Poland (POL), Hungary

(HUN) and Estonia (EST) also affected very negatively. Instead many rich countries would gain

up to 10% of GDP per worker from this change. Why is this the case? Poor countries tend to

have a positive covariance between multipliers and log TFPs, while rich countries tend to have a
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Figure 11: Counterfactuals 1

Figure 12: Counterfactuals 2
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Figure 13: Counterfactuals 3

negative one. This implies that poor countries are doing relatively well despite their low average

productivity levels, because they perform significantly better than average precisely in those sectors

that have a large impact on aggregate performance. The opposite is true in rich countries, where

highly connected sectors perform below average. Eliminating this link improves aggregate outcomes

in rich economies further, while hurting poor countries. The main reason for negative correlations

in rich countries is that they tend to have particularly large productivity gaps with the U.S. in

high-multiplier sectors, such as services. Setting the covariance between TFP and multipliers to

zero then effectively means bringing European productivity levels in the service sectors to the U.S.

level.

Finally, in the last counterfactual we use the model with wedges (see section 5.1) and set the

covariance between sectoral wedges and multipliers to zero. Figure 13 describes the result of this

exercise. On average low-income countries would gain in this counterfactual. In particular, countries

like India, Brazil, Mexico and Turkey (TUR) would see their income improve significantly because

they have large wedges in high-multiplier sectors that are very distortive. By contrast, a number of

high-income countries, such as Australia (AUS) and Ireland (IRL), would see a significant reduction

of their income because these countries currently provide implicit subsidies to high-multiplier sectors

that vanish in the counterfactual.34

34This positive effect of subsidies has to be interpreted cautiously because for simplicity wedges are modeled as a
pure waste, which implies that subsidies do not reduce resources available to other sectors.
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7 Conclusions

In this paper we have studied the role of IO structure and its interaction with sectoral productivity

levels in explaining differences in aggregate TFP and income levels across countries. We have

described and formally modeled cross-country differences in the interaction of sectoral IO multipliers

and productivities and shown that they are important for understanding variation in real GDP

per worker across countries. Our main finding is that IO linkages have two contrasting effects in

determining how micro-level (sectoral) TFP variation translates into aggregate TFP differences. On

the one hand, IO linkages substantially amplify the underlying sectoral TFP differences due to an

aggregate-multiplier effect. On the other hand, they also prevent this amplification from being as

large as would be suggested by models with an aggregate intermediate good that ignores the details

of countries’ IO structure. This is because poor countries rely on a few highly connected sectors,

which tend to have higher-than-average productivity levels, while their typical, low-productivity

sectors are not strongly linked to the rest of the economy, mitigating their impact on aggregate

TFP and income. By contrast, in rich countries highly connected sectors tend to have below-

average productivity levels, which has a disproportionally negative effect on aggregate TFP and

income of these countries. Thus, there is a positive correlation between sectoral productivities and

IO multipliers in low-income countries, but a negative one in high-income countries, which mitigates

the large cross-country income differences.

At the same time, we find that in low-income counries highly connected sectors tend to be

more distorted through high implicit tax rates, while the opposite is the case in rich countries. This

significantly reduces aggregate income of poor countries and improves aggregate income of rich ones.

These insights have important consequences for the design of development policies, which should

focus on increasing productivity and reducing distortions in key sectors.
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Appendix A: Further Robustness Checks

A-1 Sector-country-specific Capital Shares

We now relax one last simplification of our baseline model, namely the assumption that capital
shares do not vary across sectors and countries. We thus consider our benchmark economy, but
assume that capital shares in sectoral production functions can vary along both dimensions. The
technology of sector i is now as follows:

qi = Λi

(
1

1− γi
kαii l

1−αi
i

)1−γi (d1i
γ1i

)γ1i (d2i
γ2i

)γ2i
· ... ·

(
dni
γni

)γni
Then the following statement holds.

Proposition 4. In the unique competitive equilibrium, the logarithm of real GDP per worker, y, is
given by

y =
n∑
i=1

µiλi +

(
n∑
i=1

µi(1− γi)αi

)
lnK +

n∑
i=1

µiωi, (A-1)

where

µ = {µi}i = [I − Γ]−1β,

λ = {λi}i = {ln Λi}i,
ω = {ωi}i = {(1− γi) (αi ln θki + (1− αi) ln θli − ln(1− γi)− lnµi)}i ,

θki =
αi(1− γi)µi∑n
i=1 αi(1− γi)µi

,

θli =
(1− αi)(1− γi)µi∑n
i=1(1− αi)(1− γi)µi

The key difference compared to the baseline model is the term (
∑n

i=1 µi(1− γi)αi) in front of
lnK. It makes the elasticity of income per worker to the capital stock per worker country-specific.
This elasticity is now given by an IO-multiplier-weighted mean of capital shares in sectoral value
added αi(1− γi). The term

∑n
i=1 µiωi is a country-specific constant.35

Table A-1 reports the results for this model. First, this model performs significantly worse than
the baseline model in terms of predicting income per worker. It explains only around 75% of income
variation in the data. The reason is that in the WIOD data, capital income shares are systematically
higher in poor economies than in rich ones. This somewhat depresses the role of variation in capital
per worker in explaining income differences in the data.36 However, the result that the income
variance generated by the model is split roughly 50-50 between capital per worker and aggregate
TFP is unaffected. Moreover, the negative contribution of the covariance term is also very similar
to the one in the baseline model. Thus, allowing for variation in capital income shares introduces
some additional noise in the model, without affecting any key results.

35It is straightforward to verify that when αi = α for all i, equation (A-1) reduces to (6) in our baseline model.
36Note that capital income is derived as a residual and defined as gross value added minus labor income. Even

though WIOD imputes labor income of self-employed and family workers to adjust for the underestimation of the labor
income share in low-income countries, a positive correlation between the labor income share and income per worker
remains present. This contrasts with the findings of Gollin (2002) who shows that the labor share is uncorrelated with
countries’ income level.
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Table A-1: Variance decomposition of log real GDP per worker – model with sector-country-specific
capital shares

share of V ar(ymodel) explained by variation in
V ar(ymodel)
V ar(ydata)

(
∑
µ(1− γ)α) lnK

∑
µλ

∑
µω nλ̄

∑
µ nCov(λ, µ)

arithmetic mean 0.75 0.50 0.48 0.02 0.55 -0.07
geometric mean 0.74 0.50 0.47 0.03 0.55 -0.08
weighted mean 0.79 0.48 0.49 0.02 0.53 -0.04

A-2 Human Capital

In a final robustness check, we account for variation in human capital levels across countries and
sectors to make sure that our results are not biased by the omission of this factor. We thus modify
the sectoral production functions as follows:

qi = Λi

(
1

1− γi
kαi u

δ
i s

1−α−δ
i

)1−γi (d1i
γ1i

)γ1i (d2i
γ2i

)γ2i
· ... ·

(
dni
γni

)γni
, (A-2)

where ui is the number of unskilled workers and si is the number of skilled workers in sector i, and
where δ and 1−α−δ are, respectively, the income shares of unskilled and skilled workers in sectoral
value added. The rest of the model is assumed to be the same as in the baseline case. Denoting
the aggregate amount of unskilled workers by U , the aggregate amount of skilled workers by S and
normalizing the total size of the workforce to unity, we obtain the following expression for log real
GDP per worker:

Proposition 5. In the unique competitive equilibrium, the logarithm of real GDP per worker,
y = ln (Y ), is

y =

n∑
i=1

µiλi + α lnK + δ lnU + (1− α− δ) lnS. (A-3)

In order to assess how the introduction of skilled and unskilled labor as separate production
factors affects our results quantitatively, we proceed as follows. We follow Caselli, Coleman and
John (2006) and define unskilled labor as workers with primary and lower secondary education and
skilled labor as workers with more than lower secondary education. WIOD provides for each sector
and country the factor inputs and income shares of workers separated by education category. We
recompute sectoral TFP levels with the methodology exposed in section 2.5 but we now separate
labor inputs of each sector into skilled and unskilled workers. To calibrate δ and (1 − α − δ), we
first compute for each country the income share of unskilled and skilled workers in GDP and then
take the arithmetic average across countries. Assuming that α = 1/3, this gives δ = 0.22 and
1−α− δ = 0.44. We also calculate aggregate stocks of unskilled and skilled workers by aggregating
sectoral labor inputs by skill level from WIOD.

Table A-2 presents the results for variance decomposition of log real GDP per worker in this
model. Here, ykh = α lnK+δ lnU+(1−α−δ) lnS and represents the fraction of variance of log real
GDP per worker explained by variation in the amount of physical production factors per worker.The
remaining terms are the same as in the baseline model. Using arithmetic averages of expenditure
shares for the reference consumer, we obtain that the model with human capital can explain 92%
of the variance in GDP per worker, a bit more than the baseline model. Compared to the baseline
model, the fraction of income variation explained by production factors also increases from 48 to
54%. By contrast, the fraction of variation explained by average productivity times aggregate
multiplier is reduced a bit, from 52 to 46%. Finally, the negative contribution of the covariance
term between sectoral productivities and multipliers remains practically unaffected: similarly to
the baseline model, this term reduces the variance in log GDP per worker by 7%. The other
rows report results for the model with expenditure shares obtained as the geometric mean and the
quantity weighted mean. Results remain very similar. We conclude that our findings are robust to
accounting for variation in human capital across countries.
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Table A-2: Variance decomposition of log real GDP per worker – model with human capital

share of V ar(ymodel) explained by variation in
V ar(ymodel)
V ar(ydata)

ykh λ̄
∑
µ nλ̄

∑
µ nCov(λ, µ)

arithmetic mean 0.92 0.54 0.46 0.53 -0.07
geometric mean 0.91 0.55 0.45 0.54 -0.09
weighted mean 0.95 0.52 0.48 0.52 -0.04

Appendix B: Proofs for the Baseline Model and its Extensions

Propositions 1 – 3 and Proposition 5 are particular cases of Proposition 6 that applies in a generic
setting – with sector-specific wedges, traded intermediates and division of labor into skilled and
unskilled labor inputs. Here we first provide a brief description of this economy, together with
Proposition 6, its proof and conditions on parameters that result in each of the particular cases
(Propositions 1 – 3 and 5). After that we prove Proposition 4 for the economy with sector-specific
capital shares, which relies on a different argument.

• The technology of each of n competitive sectors is Cobb-Douglas with constant returns to
scale. Namely, the output of sector i, denoted by qi, is

qi = Λi

(
1

1− γi − σi
kαi u

δ
i s

1−α−δ
i

)1−γi−σi
(
d1i
γ1i

)γ1i
· ... ·

(
dni
γni

)γni

·
(
f1i
σ1i

)σ1i

· ... ·
(
fni
σni

)σni

,

where si and ui are the amounts of skilled and unskilled labor, dji is the quantity of the
domestic good j and fji is the quantity of the imported good j used by sector i. γi =

∑n
j=1 γji

and σi =
∑n

j=1 σji are the respective shares of domestic and imported intermediate goods in
the total input use of sector i and α, δ, 1−α− δ are the respective shares of capital, unskilled
and skilled labor in the remainder of the inputs.

• A good produced by sector i can be used for final consumption, ci, as an intermediate good
or exported abroad:

ci +

n∑
j=1

dij + xi = qi i = 1 : n

• Exports pay for the imported intermediate goods, and we impose a balanced trade condition:

n∑
j=1

pjxj =
n∑
i=1

n∑
j=1

pjfji,

where pj is the domestic and export price of intermediate good j and pj is the import price
of intermediate good j.

• Consumers have Cobb-Douglas utility:

u(c1, ..., cn) =

n∏
i=1

(
ci
βi

)βi
,

where βi ≥ 0 for all i and
∑n

i=1 βi = 1.

• Consumers own all production factors, and use their income to finance consumption:∑
i

pici = wUU + wSS + rK.

• Consumers maximize utility subject to their budget constraint
∑

i pici = I, taking prices
taking prices {pi}, wU , wS and r as given.
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• Intermediate good producers maximize profits:

max
{dji},{fji},ki,li

(1−τi)piΛi
(

1

1− γi − σi
kαi u

δ
i s

1−α−δ
i

)1−γi−σi
(
d1i
γ1i

)γ1i
·...·
(
dni
γni

)γni

·
(
f1i
σ1i

)σ1i

·...·
(
fni
σni

)σni

−
n∑
j=1

pjdji −
n∑
j=1

pjfji − rki − wUui − wSsi, i ∈ 1 : n

taking prices {pj}, {pj} of all goods and prices of labor and capital, wU , wS and r, as given
(τi and Λi are exogenous). τi is a sector-specific wedge that reduces the value of sector i’s
production by a factor (1− τi).

• The total supply of physical capital, unskilled and skilled labor are fixed at the exogenous
levels of K, U and S, respectively, and we normalize U + S = 1:

n∑
i=1

ki = K,

n∑
i=1

ui = U,

n∑
i=1

si = S.

• Numeraire: P =
∏n
i=1 (pi)

βi = 1.

• Definition of real GDP: Y =
∑n

i=1 pici = u.

For this “generic” economy, the competitive equilibrium is described by the following proposition.

Proposition 6. There exists a unique competitive equilibrium. In this equilibrium, the logarithm
of GDP per capita, y = ln (Y ), is given by

y =
1∑n

i=1 µi(1− γi − σi)

 n∑
i=1

µiλi −
n∑
i=1

n∑
j=1

µiσji ln p̄j +
n∑
i=1

µi ln(1− τi)

+

+α lnK + δ lnU + (1− α− δ) lnS, (A-4)

where

µ = {µi}i = [I − Γ]−1β, n× 1 vector of multipliers

Γ = {γji}ji, n× n input-output matrix for domestic intermediates

λ = {λi}i = {ln Λi}i, n× 1 vector of sectoral log-productivity coefficients

Proof of Proposition 6. Part I: Calculation of lnwU .
Consider a profit maximization problem of the representative firm in each sector i. The FOCs are:

α(1− γi − σi)(1− τi)
piqi
r

= ki (A-5)

δ(1− γi − σi)(1− τi)
piqi
wU

= ui (A-6)

(1− α− δ)(1− γi − σi)(1− τi)
piqi
wS

= si (A-7)

γji(1− τi)
piqi
pj

= dji j ∈ 1 : n (A-8)

σji(1− τi)
piqi
p̄j

= fji j ∈ 1 : n (A-9)
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Substituting the left-hand side of these equations for the values of ki, ui, si, {dji} and {fji} in firm
i’s log-production technology and simplifying the obtained expression, we derive:

δ lnwU =
1

1− γi − σi

(
λi + ln pi −

n∑
j=1

γji ln pj −
n∑
j=1

σji ln p̄j + ln(1− τi)
)
−

−α ln r − (1− α− δ) ln(wS) + α lnα+ δ ln δ + (1− α− δ) ln(1− α− δ). (A-10)

Next, we use FOCs (A-5) – (A-9) and market clearing conditions for labor and capital to express
r and wS in terms of wU :

wU =
1

U
δ

n∑
i=1

(1− γi − σi)(1− τi)(piqi) (A-11)

wS =
1

S
(1− α− δ)

n∑
i=1

(1− γi − σi)(1− τi)(piqi) =
wUU

S

1− α− δ
δ

(A-12)

r =
1

K
α

n∑
i=1

(1− γi − σi)(1− τi)(piqi) =
wuU

K

α

δ
(A-13)

Substituting these values of r and wS in (A-10) we obtain:

lnwU =
1

1− γi − σi

(
λi + ln pi −

n∑
j=1

γji ln pj −
n∑
j=1

σji ln p̄j + ln(1− τi)
)

+

+α lnK − (1− δ) lnU + (1− α− δ) lnS + ln δ

Multiplying this equation by the ith element of the vector µ′D = β′[I − Γ′]−1 ·D, where D is a
diagonal matrix with Dii = 1− γi − σi, and summing over all sectors i gives

lnwU

n∑
i=1

µi(1− γi − σi) =
n∑
i=1

µiλi +
n∑
i=1

βi ln pi −
n∑
i=1

n∑
j=1

µiσji ln p̄j +
n∑
i=1

µi ln(1− τi) +

+
n∑
i=1

µi(1− γi − σi)
(
α lnK − (1− δ) lnU + (1− α− δ) lnS + ln δ

)
Next, we use the price index normalization P =

∏n
i=1 (pi)

βi = 1, which implies that
∑n

i=1 βi ln pi =
0. Then we can write the above equation as follows:

lnwU =
1∑n

i=1 µi(1− γi − σi)

 n∑
i=1

µiλi −
n∑
i=1

n∑
j=1

µiσji ln p̄j +

n∑
i=1

µi ln(1− τi)

+

+α lnK − (1− δ) lnU + (1− α− δ) lnS + ln δ (A-14)

Part II: Calculation of y.
Recall that our ultimate goal is to find y = ln (Y ) = ln (

∑
i pici). Since consumers’ expenditure is

financed through income, Y =
∑

i pici = wUU + wSS + rK.
Using (A-12) and (A-13), this leads to

Y =
wUU

δ
.

so that
y = lnY = lnwU + lnU − ln δ.

Finally, substituting (A-14) for lnwU yields our result:
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y =
1∑n

i=1 µi(1− γi − σi)

 n∑
i=1

µiλi −
n∑
i=1

n∑
j=1

µiσji ln p̄j +
n∑
i=1

µi ln(1− τi)

+

+α lnK − (1− δ) lnU + (1− α− δ) lnS + ln δ + lnU − ln δ

that is,

y =
1∑n

i=1 µi(1− γi − σi)

 n∑
i=1

µiλi −
n∑
i=1

n∑
j=1

µiσji ln p̄j +

n∑
i=1

µi ln(1− τi)

+

+α lnK + δ lnU + (1− α− δ) lnS.

This completes the proof.

Application of Proposition 6 to the case of the baseline economy (Proposition 1) and extensions
(Propositions 2, 3 and 5):

• Baseline economy, Proposition 1: In case of our baseline economy, we assume that: i) there is
no distinction between skilled and unskilled labor, so that δ = 1 − α and the total supply of
labor is normalized to 1; ii) the economies are closed, so that no imported intermediate goods
are used in sectors’ production, that is, σji = 0 for all i, j ∈ 1 : n and σi = 0 for all i; iii) there
are no wedges, that is, τi = 0 for all i. This simplifies the expression for y in Proposition 6
and produces the result of Proposition 1:37

y =
n∑
i=1

µiλi + α lnK.

• Wedges, Proposition 2: For the economy with sector-specific wedges, we assume, in addition
to the benchmark model, that there exist non-zero distortions, or wedges τi 6= 0. Then the
expression for y in Proposition 6 turns into

y =
n∑
i=1

µiλi +
n∑
i=1

µi ln(1− τi) + α lnK.

• Traded intermediate goods, Proposition 3: In the economy, where we differentiate between
domestically produced and imported intermediates, σji 6= 0 and σi 6= 0. But, as in the
benchmark model, there is no distinction between skilled and unskilled labor, and no wedges.
In addition, due to restrictions imposed by the data, we assume that import prices do not
vary across sectors, that is, ρj = ρ, where ρj = p̄j/P , and P is normalized to 1. Then∑n

i=1

∑n
j=1 µiσji ln p̄j = ln ρ

∑n
i=1 µiσi, and the expression for y in Proposition 6 becomes:

y =
1∑n

i=1 µi(1− σi − γi)

(
n∑
i=1

µiλi − ln ρ

n∑
i=1

µiσi

)
+ α lnK,

• Human capital, Proposition 5: The model where we introduce two types of labor, skilled and
unskilled, is identical to the benchmark model in all other respects. So, the expression for y is

y =
n∑
i=1

µiλi + α lnK + δ lnU + (1− α− δ) lnS.

37Note that
∑n
i=1 µi(1− γi) = 1′[I − Γ] · [I − Γ]−1β = 1′β = 1.
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Proof of Proposition 4. Consider an economy that is identical to the one in our baseline model with
the exception of a sectoral production function which now involves sector-specific capital shares.
Namely, let the technology of sector i be described by:

qi = Λi

(
1

1− γi
kαii l

1−αi
i

)1−γi (d1i
γ1i

)γ1i (d2i
γ2i

)γ2i
· ... ·

(
dni
γni

)γni
The following two-step argument delivers the expression for the logarithm of aggregate income per
worker in this economy.
Part I: Calculation of ln qi.
Consider a profit maximization problem of the representative firm in each sector i. The FOCs are:

αi(1− γi)
piqi
r

= ki (A-15)

(1− αi)(1− γi)
piqi
w

= li (A-16)

γji
piqi
pj

= dji j ∈ 1 : n (A-17)

(A-18)

We will now use these FOCs to solve for some allocations.
First, consider the market clearing condition for sector j:

qj = cj +

n∑
i=1

dji

Using equation (A-17) and rearranging it slightly, we obtain:

pjqj = pjcj +
n∑
i=1

γjipiqi (A-19)

From the expenditure minimization problem it follows that βj =
pjcj
PY , so that pj =

βjPY
cj

. Using

this expression for pj and cancelling PY from both sides of the equation gives:

βjqj
cj

= βj +

n∑
i=1

γji
βiqi
ci

(A-20)

Now, define vj ≡ βjqj
cj

and let v denote the n × 1 vector of vj . Then we can stack the n equations

in (A-20) to get an equation in matrix form:

v = β + Γv,

where Γ is our matrix of intermediate goods shares with a typical element γji. Solving this equation
for v, we obtain:

v = [I − Γ]−1β ≡ µ

Notice that this defines the solution for
βjqj
cj

as µj . It is easy to show that it is also a solution to

µj =
pjqj
PY , so that µj is the Domar weight (the ratio of total spending on intermediate good j to

PY ).

Next, we use this solution µj =
βjqj
cj

, together with βj =
pjcj
PY , to obtain:

pi
pj

=
cj
ci

βi
βj

=
µi
µj

qj
qi
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Substituting this into the FOC for dji in (A-17) leads to:

dji = γji
µi
µj
qj (A-21)

The FOCs for ki, li similarly yield:

ki
K

=
αi(1− γi)piqi∑n
i=1 αi(1− γi)piqi

=
αi(1− γi)µi∑n
i=1 αi(1− γi)µi

≡ θki (A-22)

li
1

=
(1− αi)(1− γi)piqi∑n
i=1(1− αi)(1− γi)piqi

=
(1− αi)(1− γi)µi∑n
i=1(1− αi)(1− γi)µi

≡ θli (A-23)

Now we can substitute (A-21) -(A-23) back into the sectoral production function:

qi = Λi

(
1

1− γi
(Kθki)

αi (θli)
1−αi

)1−γi n∏
j=1

(
µi
µj
qj

)γji
(A-24)

Taking logs of this expression gives:

ln qi = λi + (1− γi) (αi ln(Kθki) + (1− αi) ln(θli)− ln(1− γi)) +
n∑
j=1

γji

(
ln
µi
µj

+ ln qj

)
=

= λi + δki lnK + ωqi +
n∑
j=1

γji ln qj ,

where δki = (1− γi)αi and ωqi = (1− γi) (αi ln θki + (1− αi) ln θli − ln(1− γi)) +
∑n

j=1 γji ln µi
µj

. In

vector form this can be written as:

ln q = λ+ δk lnK + ωq + Γ′ln q,

where ln q = {ln qi}i, δk = {δki }i and ωq = {ωqi }i are n×1 vectors and Γ′ is the transpose of matrix
Γ. This equation can be solved to yield:

ln q = [I − Γ′]−1
(
λ+ δk lnK + ωq

)
(A-25)

Part II: Calculation of y.
We will now use the expression for ln q in (A-25) to derive the expression for y = ln(Y ). Recall that
µi = piqi

PY , where P is normalized to 1, so that Y = piqi
µi

. Taking logs, we obtain y = ln(piqi)− lnµi.
Now, let us multiply both sides of this expression by βi and sum across all i. This gives:

y =
n∑
i=1

βi ln pi +
n∑
i=1

βi ln qi −
n∑
i=1

βi lnµi =
n∑
i=1

βi ln qi −
n∑
i=1

βi lnµi, (A-26)

where the second equality uses the fact that P =
∏n
i=1 (pi)

βi = 1, i.e.,
∑n

i=1 βi ln pi = 0.
Using vector notation and the expression for ln q in (A-25), equation (A-26) can be written as

y = β′ln q −
n∑
i=1

βi lnµi = β′[I − Γ′]−1
(
λ+ δk lnK + ωq

)
−

n∑
i=1

βi lnµi =

= µ′
(
λ+ δk lnK + ωq

)
−

n∑
i=1

βi lnµi
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Substituting the definition of δk and going back to notation without vectors, we obtain:

y =

n∑
i=1

µiλi +

(
n∑
i=1

µi(1− γi)αi

)
lnK +

n∑
i=1

µiω
q
i −

n∑
i=1

βi lnµi (A-27)

This can be further simplified by observing that
∑n

i=1 µiω
q
i and

∑n
i=1 βi lnµi contain identical terms

that cancel out. To see this, note first that from µj =
pjqj
PY , equation (A-19) and βj =

pjcj
PY , we can

establish the following relationship between µj and βj :

µj =
pjqj
PY

=
pjcj +

∑n
i=1 γjipiqi

PY
= βj +

n∑
i=1

γjiµi

Equivalently, βj = µj −
∑n

i=1 γjiµi. This implies that

n∑
j=1

βj lnµj =
n∑
j=1

µj lnµj −
n∑
j=1

n∑
i=1

(γjiµi) lnµj =
n∑
j=1

µj lnµj −
n∑
i=1

µi

n∑
j=1

γji lnµj (A-28)

On the other hand,
n∑
j=1

γji ln
µi
µj

=
n∑
i=1

γi lnµi −
n∑
j=1

γji lnµj ,

so that

n∑
i=1

µiω
q
i =

n∑
i=1

µi

(1− γi) (αi ln θki + (1− αi) ln θli − ln(1− γi)) +

n∑
i=1

γiµi lnµi −
n∑
i=1

µi

n∑
j=1

γji lnµj


(A-29)

Note that the last terms in (A-28) and (A-29) are the same. This allows rewriting the expression
for y in (A-27) as follows:

y =

n∑
i=1

µiλi +

(
n∑
i=1

µi(1− γi)αi

)
lnK +

n∑
i=1

µiωi,

where ωi = (1− γi) (αi ln θki + (1− αi) ln θli − ln(1− γi)− lnµi). This produces our result.

Appendix C: Derivation of the productivity index

In Section 2.5, the multilateral sector-specific Cobb-Douglas productivity index lnλ∗ikl in (13) is
obtained as follows. Consider the Cobb-Douglas technology with a composite input Xis, qis =

Λis

(
Xis
αXis

)αXis
, where i denotes a sector and s denotes a country. Let us define the productivity of

country k relative to s in sector i using the production function of country s as a base as follows:
λis = Λiks/Λiss, where Λiks is defined by qik = Λiks(Xik/αXis)

αXis , and Λiss = Λis. Essentially,
Λiks is a TFP parameter that makes the sector i’s output of country k producible with own input
levels of country k and the production function of s. Similarly, we can define λik = Λikk/Λisk, the
productivity of country k relative to s in sector i using country k’s production function as a base.
Then lnλis ≡ (ln qik−ln qis)−αXis(lnXik−lnXis) and lnλik = (ln qik−ln qis)−αXik(lnXik−lnXis).
In this way, for each sector-country pair ik we can construct m pairs of different productivity indices
(λik, λis), each representing productivity of country k relative to s in sector i using country k and
country s as a base, s ∈ 1 : m. Next, for each of these pairs we define λiks as the geometric mean
of λik and λis. This is then the bilateral base-country invariant definition of the productivity of k
relative to s in sector i:

lnλiks = (lnλik + lnλis)/2
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Plugging in the defined lnλik and lnλis, we obtain:

lnλiks = (ln qik − ln qis)−
1

2
(αXis + αXik)(lnXik − lnXis) (A-30)

However, the so-defined λiks is not transitive, i.e. lnλiks 6= lnλikl − lnλisl. Therefore, we next
define lnλik – the average of log productivities of country k in sector i relative to all other countries
s = 1, ...,m:

lnλik =
1

m

m∑
s=1

lnλiks (A-31)

Finally, we define the multilateral productivity index as:

lnλ∗ikl ≡ lnλik − lnλil =
1

m

m∑
s=1

lnλiks −
1

m

m∑
s=1

lnλils =
1

m

m∑
s=1

ln

(
λiks
λils

)
(A-32)

This multilateral productivity index corresponds to log TFP of country k relative to country l
in sector i, and it is equal to the simple average (across all s) of log ratios of productivity of country
k relative to s to productivity of country l relative to s in sector i, ln (λiks/λils).

Plugging (A-30) into this definition gives:

lnλ∗ikl ≡ 1

m

m∑
s=1

lnλiks −
1

m

m∑
s=1

lnλils =

= (ln qik −
1

m

m∑
s=1

ln qis)−
1

2

[
αXik

(
lnXik −

1

m

m∑
s=1

lnXis

)
+

1

m

m∑
s=1

αXis (lnXik − lnXis)

]
−

−(ln qil −
1

m

m∑
s=1

ln qis) +
1

2

[
αXil

(
lnXil −

1

m

m∑
s=1

lnXis

)
+

1

m

m∑
s=1

αXis (lnXil − lnXis)

]
=

= (ln qik − ln qil)−
1

2

[
αXik

(
lnXik −

1

m

m∑
s=1

lnXis

)
− αXil

(
lnXil −

1

m

m∑
s=1

lnXis

)
+

+
1

m

m∑
s=1

αXis (lnXik − lnXil)

]
.

Combining the terms, we derive (13):

lnλ∗ikl = ln qik − ln qil −
1

2
(αXik + αXi)

(
lnXik − lnXi

)
+

1

2
(αXil + αXi)

(
lnXil − lnXi

)
,

where αXi = 1
m

∑m
s=1 αXis and lnXi = 1

m

∑m
s=1 lnXis.

Appendix D: Additional Tables
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Table A-3: Countries: WIOD Sample

countries
AUS IND
AUT IRL
BEL ITA
BGR KOR
BRA JPN
CAN LTU
CHN LVA
CYP MEX
CZE MLT
DEU NLD
DNK POL
ESP PRT
EST ROM
FIN RUS
FRA SVK
GBR SVN
GRC SWE
HUN TUR
IDN USA

Figure A-1: Sectoral IO multipliers
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Table A-4: Sector List

WIOD sectors
1 Agriculture
2 Mining
3 Food
4 Textiles
5 Leather
6 Wood
7 Paper
8 Refining
9 Chemicals

10 Plastics
11 Minerals
12 Metal products
13 Machinery
14 Elec. equip.
15 Transport equip.
16 Manufacturing nec
17 Electricity
18 Construction
19 Car retail.
20 Wholesale trade
21 Retail trade
22 Restaurants
23 Inland transp.
24 Water transp.
25 Air transp.
26 Transp. nec.
27 Telecomm.
28 Fin. serv.
29 Real est.
30 Business serv.
31 Pub. admin.
32 Education
33 Health
34 Social serv.
35 Household empl.
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