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Abstract

We study the importance of input-output (IO) linkages and sectoral productivity (TFP) levels

in determining cross-country income differences. Using data on IO tables and sectoral TFP levels

for 38 countries, we uncover important differences in the interaction of IO structure with sectoral

TFP levels across countries: while highly connected sectors are more productive than the typical

sector in poor countries, the opposite is true in rich ones. To assess the quantitative role of

linkages and sectoral TFP differences in cross-country income differences, we decompose cross-

country variation in real GDP per worker using a multi-sector general equilibrium model. We

find that these features explain between 8 and 10 percent of cross-country income variation.
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1 Introduction

The development accounting literature1 has established that cross-country differences in income

per capita come from two sources: from aggregate productivity differences and from differences

in physical production factors. This paper takes this a step further and decomposes aggregate

productivity differences into sectoral productivity variation and differences in the interaction of

countries’ input-output (IO) structure with sectoral productivities. IO linkages between sectors

can potentially dampen or amplify sectoral productivity differences, as noted by a literature in

development economics initiated by Hirschman (1958), with more recent contributions provided by

Ciccone (2002) and Jones (2011 a,b). In this paper we contribute to this literature by establishing

systematic and empirically relevant cross-country differences in the interaction of IO structure with

sectoral TFP levels. We then show, theoretically and quantitatively, that these differences are of

first-order importance for explaining cross-country income variation.

Countries’ IO structure, by means of the linkages between sectors, determines each sector’s

importance or “weight” in aggregate TFP. It can be effectively summarized using the distribution

of sectoral IO multipliers. The (first-order) IO multiplier of a sector depends on the value-added

share of that sector, the number of sectors to which the sector supplies and the intensity with

which its output is used as an input by other sectors.2 It measures by how much aggregate income

changes if productivity of a given sector changes by one percent. Thus, TFP levels in sectors with

high multipliers have a larger impact on aggregate income compared to sectors with low multipliers.

To quantitatively assess the role of IO linkages and sectoral TFP levels for cross-country income

differences, we first build a neoclassical multi-sector model that admits a closed-form solution for

GDP per worker as a log-linear function of sectoral IO multipliers, sectoral TFP levels and the

capital stock per worker.3 Higher average IO multipliers, higher average sectoral TFP and a positive

correlation between sectoral IO multipliers and TFP levels all have a positive effect on income per

worker.

We then use data from the World Input-Output Database (Timmer, 2012) to construct a unique

dataset of IO tables and sectoral TFP levels (relative to those of the U.S.) for 38 low and high-

income countries and 35 sectors. The empirical distribution of sectoral multipliers has a fat right

tail in all countries, so that the TFP levels of a few high-multiplier sectors have a large impact on

1See, e.g., Klenow and Rodriguez-Clare (1997), Hall and Jones (1999), Caselli (2005).
2The intensity of input use is measured by the IO coefficient, which states the cents spent on that input per dollar

of output produced. There are also higher-order effects, which depend on the IO coefficients of the sectors to which
the sectors that use the initial sector’s output as an input supply.

3In our baseline model, we take variation in IO structure across countries as exogenous. Due to Cobb-Douglas
technology, the IO coefficients correspond to the coefficients of the sectoral Cobb-Douglas production functions, which
are independent of TFP levels. In robustness checks we account for possible endogeneity of IO linkages by: (i) allowing
for sector-country-specific tax wedges; (ii) introducing CES production functions, which makes IO linkages endogenous
to sectoral TFP levels.
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aggregate outcomes. This feature is more pronounced in low-income countries. Most importantly,

in low-income countries, sectoral IO multipliers and TFP levels are positively correlated, while they

are negatively correlated in rich economies.

When feeding the empirical values of sectoral IO multipliers, sectoral TFP levels and aggregate

capital stocks per worker into our model, it is able to explain roughly 90 percent of the income

variation observed in the data, which is remarkable.4 To understand the channels of cross-country

income differences in our model, we then provide an exact variance decomposition of log GDP per

worker. The model splits income variation into (i) variation in the capital stock per worker, (ii)

variation in average sectoral multipliers and average sectoral TFP levels and (iii) variation in the

covariance between sectoral TFPs and multipliers across countries.5 Variation in capital stocks per

worker, and in average sectoral TFP levels and multipliers explain roughly equal proportions of

the variation in GDP per worker – about 49% each. Importantly, variation in the covariance term

between TFP levels and multipliers reduces the variation in GDP per worker by 8-10%. Intuitively,

the large average sectoral TFP differences are mitigated by countries’ IO structures: in low-income

countries, low-productivity sectors tend to be poorly connected (have low multipliers) and are thus

not too harmful, while sectors with high multipliers have relatively high productivity levels and thus

boost aggregate income.6 By contrast, in high-income countries, high-multiplier sectors tend to have

below-average productivity levels, which reduces income of rich countries significantly. Thus, since

(iii) is a part of aggregate TFP, relative to the 90% of the total variation explained by the model,

cross-country income differences can be split roughly into 45% due to aggregate TFP differences

and 55% due to differences in production factors per worker.7

In our baseline model, differences in IO structure across countries are exogenously given. How-

ever, one may be concerned that observed IO linkages are affected by (implicit) tax wedges. In

an extension, we thus identify sector-country-specific wedges as deviations of sectoral intermediate

input shares from their cross-country average value: a below-average intermediate input share in a

given sector identifies a positive implicit tax wedge. We show that poor countries have higher aver-

age tax wedges and also tax their high-multiplier sectors relatively more, while the opposite is the

case in rich economies. Introducing wedges into our model reduces the role of average productivity

4The residual variation is arguably due to measurement error, which is more severe in low-income economies.
5In the light of Hulten’s (1978) results, one may be skeptical whether using a structural general equilibrium model

and considering the features of the IO matrices adds much compared to computing aggregate TFP as a weighted
average of sectoral TFPs (where the adequate ’Domar’ weights correspond to the shares of sectoral gross output in
GDP). Absent distortions, Domar weights equal sectoral IO multipliers and summarize the direct and indirect effect of
IO linkages. However, such a reduced-form approach does not allow to assess which features of the IO structure matter
for aggregate outcomes or to compute counter-factual outcomes due to changes in IO structure or productivities, as
we do. Finally, as Basu and Fernald (2002) show, in the presence of sector-specific distortions (that we consider in an
extension) the simple reduced-form connection between sectoral productivities and aggregate TFP breaks down.

6An important exception is agriculture, which in low-income countries has a high IO multiplier and a below-average
productivity level.

745% ≈ (49− 8) ∗ 100/90.
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differences in explaining cross-country income differences by around 5%, while leaving the role of

the covariance term between sectoral TFPs and multipliers unaffected (it reduces income variation

by 9%). Moreover, variation in average wedges and the covariance between multipliers and wedges

across countries explain an additional 7% of income variation. Overall, the message that according

to the model cross-country income variation can be decomposed into roughly 45% due to aggregate

TFP differences (including wedges), and 55% due to differences in production factors per worker

continues to hold.

In a further robustness check, we relax the assumption of a unit elasticity of substitution between

intermediate inputs, so that IO linkages become endogenous to prices. We show that an elasticity

of substitution between intermediate inputs different from unity is hard to reconcile with the data

because – depending on whether intermediates are substitutes or complements – it implies that

sectoral IO multipliers and TFP levels should either be positively or negatively correlated in all

countries. Instead, we observe a positive correlation between these variables in poor economies and

a negative one in rich economies.

Moreover, we also extend our baseline model to incorporate trade in intermediate inputs. This

model explains 94% of cross-country income variation: higher relative prices of imported interme-

diates in poor countries account for an additional 10% of cross-country income variation, and the

remaining variation is split according to 49% due to capital stock per worker, 46% due to average

multiplier and average TFP, −12% due to the covariance term between multipliers and TFP. In the

last robustness check, we differentiate between skilled and unskilled labor inputs, which increases the

role of physical factors by 5%, while keeping the role of the interaction between TFP and multipliers

unaffected.

Finally, we carry out a number of simple counterfactuals. First, we eliminate TFP differences

between countries and set all sectoral TFP levels equal to those of the U.S. Not surprisingly, virtually

all countries would gain if they had the U.S. productivity levels. Low-income countries would

benefit most, with some of them almost doubling their income per worker. Second, we impose that

sectoral IO multipliers and productivities are uncorrelated. This scenario would hurt low-income

countries significantly: they would lose up to 20% of income per worker, because they would no

longer experience the advantage of having above-average TFP levels in high-multiplier sectors. By

contrast, high-income countries would benefit, since for them the correlation between multipliers

and TFP levels would no longer be negative. In the last counterfactual we eliminate the correlation

between sectoral wedges and multipliers. This would benefit a number of low-income countries and

raise their income by around 10%. On the other hand, the income of rich countries would fall, since

these countries tend to have below average tax wedges in high-multiplier sectors.
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1.1 Literature

We now turn to a discussion of the related literature.

Our work is related to the literature on development accounting, which aims at quantifying the

importance of cross-country variation in factor endowments – such as physical, human or natural

capital – relative to aggregate productivity differences in explaining disparities in income per capita

across countries. This literature typically finds that both are roughly equally important in account-

ing for cross-country income differences.8 The approach of development accounting is to specify an

aggregate production function for value added (typically Cobb-Douglas) and to back out produc-

tivity differences as residual variation that reconciles the observed income differences with those

predicted by the model given the observed variation in factor endowments. Thus, this aggregate

production function abstracts from cross-country differences in the underlying IO structure. We

contribute to this literature by: (i) showing how an aggregate production function for value added

can be derived in the presence of IO linkages; (ii) proving that differences in the interaction between

IO structure and sectoral TFPs are of first-order importance for explaining cross-country income

differences.

The importance of linkages and IO multipliers for aggregate income differences has been high-

lighted by Fleming (1955), Hirschmann (1958), and, more recently, by Ciccone (2002) and Jones

(2011 a,b). These authors point out theoretically that if the intermediate share in gross output is

sizable, there exist large multiplier effects: small firm (or industry-level) productivity differences or

distortions that lead to misallocation of resources across sectors or plants can add up to large ag-

gregate effects. While our setup in principle allows for a mechanism whereby intermediate linkages

amplify small sectoral productivity differences, we find little empirical evidence for this channel:

cross-country TFP differences at the sector level are actually larger than aggregate TFP differences,

and the tendency of low-income countries to have above-average productivity in sectors that are

highly connected, in fact, helps to reduce aggregate productivity differences.

Our finding that sectoral productivity differences between rich and poor countries are large

compared to aggregate ones is instead similar to the result of the literature on dual economies

and sectoral productivity gaps in agriculture.9 Also closely related to our work is a literature on

structural transformation. It emphasizes sectoral productivity gaps and transitions from agriculture

to manufacturing and services as a reason for cross-country income differences (see, e.g., Duarte

and Restuccia, 2010 for a recent contribution). However, most of this literature abstracts from the

role of linkages between industries.

In terms of modeling approach, our paper adopts the framework of the multi-sector real business

8See, e.g., Klenow and Rodriguez-Clare (1997), Hall and Jones (1999), Caselli (2005), Hsieh and Klenow (2010).
9See, e.g., Caselli (2005), Chanda and Dalgaard (2008), Restuccia, Yang, and Zhu (2008), Vollrath (2009), Gollin

et al.(2014).
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cycle model with IO linkages of Long and Plosser (1983); in addition, we model the input-output

structure quite similarly to the setup of Acemoglu, Carvalho and Ozdaglar (2012).10 In contrast to

these studies, which deal with the relationship between sectoral productivity shocks and aggregate

economic fluctuations, we are interested in the question how sectoral TFP levels interact with the

IO structure to determine aggregate income levels and we provide corresponding empirical evidence.

Other recent related contributions are Oberfield (2018) and Carvalho and Voigtländer (2015),

who develop an abstract theory of endogenous input-output network formation, and Boehm (2018),

who focuses on the role of contract enforcement on aggregate productivity differences in a quanti-

tative structural model with IO linkages. Differently from these papers, we do not try to model the

IO structure as arising endogenously and we take sectoral productivity differences as exogenous.

Instead, we aim at understanding how given differences in IO structure and sectoral productivities

translate into aggregate income differences.

The number of empirical studies investigating cross-country differences in IO structure is quite

limited. In the most comprehensive study up to that date, Chenery, Robinson, and Syrquin (1986)

find that the intermediate input share of manufacturing increases with industrialization and that

IO matrices become denser as countries industrialize. Most closely related to our paper is the

contemporaneous work by Bartelme and Gorodnichenko (2015). They also collect data on IO tables

for many countries and investigate the relationship between IO linkages and aggregate income.11

In reduced-form regressions of aggregate IO multipliers on income per worker, they find a positive

correlation between the two variables. Moreover, they investigate how distortions affect IO linkages

and income levels. Differently from the present paper, they do not use data on sectoral productivities

nor disaggregated IO tables. As a consequence, they do not investigate how differences in the

interaction of sectoral multipliers and productivities impact on aggregate income, which is the focus

of our work.

The outline of the paper is as follows. In the next section, we lay out our theoretical model

and derive an expression for aggregate GDP per worker in terms of sectoral IO multiplers and TFP

levels. In the following section, we describe our dataset and present some descriptive statistics.

Subsequently, we turn to the empirical quantification of our model. We then present a number of

robustness checks and the results of the counterfactuals. The final section presents our conclusions.

10Related to Acemoglu et al. (2012) empirical work by Barrot and Sauvagnat (2016) provides reduced-form evidence
for the short-run propagation of exogenous firm-specific shocks in the production network of U.S. firms.

11Grobovsek (2018) performs a development accounting exercise in a more aggregate structural model with two
final and two intermediate sectors.
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2 Theoretical Framework

2.1 Model

In this section we present a simple model of an economy with intersectoral linkages (based on Long

and Plosser, 1983 and Jones, 2011b) that will be used in the remainder of our analysis. Consider

a static multi-sector economy. n competitive sectors each produce a distinct good that can be

used either for final consumption or as an input for production in any of the other sectors. The

technology of sector i ∈ 1 : n is Cobb-Douglas with constant returns to scale. Namely, the output

of sector i, denoted by qi, is

qi = Λi

(
1

1− γi
kαi l

1−α
i

)1−γi (d1i
γ1i

)γ1i (d2i
γ2i

)γ2i
· ... ·

(
dni
γni

)γni
(1)

where Λi is the exogenous total factor productivity of sector i, ki and li are the quantities of capital

and labor used by sector i and dji is the quantity of good j used in production of good i (intermediate

good produced by sector j).12 The exponent γji ∈ [0, 1) represents the output elasticity of good j in

the production technology of firms in sector i, which also corresponds to the cost share of sector j’s

output, pjdji/piqi. γi =
∑n

j=1 γji ∈ (0, 1) is the total share of intermediate goods in gross output

of sector i, and parameters α, 1− α ∈ (0, 1) are the shares of capital and labor in the remainder of

the inputs (value added). This specification allows for arbitrary asymmetries in linkages between

sector pairs ij but fixes the output elasticities of labor and capital to be the same across sectors.

Given the Cobb-Douglas technology in (1) and competitive markets, the γjis also correspond to

the entries of the IO matrix, measuring the value of spending on input j per dollar of production of

good i. We denote this IO matrix by Γ. The entries of the j’th row of matrix Γ represent the values

of spending on a given input j per dollar of production of each sector in the economy. By contrast,

the elements of the i’th column of matrix Γ are the values of spending on inputs from each sector

in the economy per dollar of production of a given good i.13

The output of sector i can be used either for final consumption, ci, or as an input in sector j:

ci +
n∑
j=1

dij = qi, i = 1 : n (2)

Consumers have Cobb-Douglas utility:

u(c1, ..., cn) =

n∏
i=1

(
ci
βi

)βi
, (3)

12In section 5 we consider the case of an open economy, where each sector’s production technology employs both
domestic and imported intermediate goods that are imperfectly substitutable.

13According to our notation, the sum of elements in the i’th column of matrix Γ is equal to γi, the total intermediate
goods’ share of sector i.
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where βi ≥ 0 for all i and
∑n

i=1 βi = 1. βi corresponds to consumers’ expenditure share on sector

i. Consumers own all production factors and spend all their income I on consumption. Aggregate

expenditure E of consumers can be written as E =
∑

i pici = P · u, where u is a given utility level

and P is the expenditure minimizing price index for this given utility (ideal price index). It is easy

to show that P =
∏n
i=1 (pi)

βi .14

Finally, the total supply of capital and labor are exogenous and fixed at the levels of K and 1,

respectively, implying that all aggregate variables can be interpreted in per-worker terms:

n∑
i=1

ki = K, (4)

n∑
i=1

li = 1. (5)

To complete the description of the model, we provide a formal definition of a competitive equi-

librium.

Definition A competitive equilibrium is a collection of quantities qi, ki, li, ci, dij , Y and prices pi,

P , w, and r for i ∈ 1 : n such that

1. {ci}i∈1:n solve the utility maximization problem of a consumer subject to the budget constraint∑
i pici = I, taking prices {pi} as given.

2. {dij}, ki, li solve the profit maximization problem of the representative firm in each perfectly

competitive sector i for i ∈ 1 : n, taking {pi} of all goods and prices of labor and capital, w

and r, as given (Λi is exogenous).

3. Aggregate expenditure equals income: E = P · u = w + rK.

4. Markets clear:

(a) capital market clearing:
∑n

i=1 ki = K,

(b) labor market clearing:
∑n

i=1 li = 1,

(c) market clearing in sector i: ci +
∑n

j=1 dij = qi, for i = 1, ..., n− 1.

5. Numeraire: P =
∏n
i=1 (pi)

βi = 1.

6. Definition of real GDP per worker: Y =
∑n

i=1 pici = u.

The choice of the aggregate consumer price index P as numeraire converts nominal consumption

expenditure E into utility. Since consumption expenditure equals GDP per worker (total value

14Indeed, the solution of minci
∑
i pici s.t.

∏n
i=1

(
ci
βi

)βi
= u is ci = βiu

∏
j 6=i

(
pj
pi

)βj
. Then E =

∑
i pici = P · u.
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added), we obtain that real GDP per worker Y is equal to utility: Y =
∑n

i=1 pici = u. We take it

as our welfare measure.

2.2 Equilibrium

The system of optimality conditions for the utility and profit maximization problems together with

the market clearing conditions can be solved analytically and allows deriving an explicit expression

for welfare in terms of exogenous variables. The following proposition characterizes the equilibrium

value of the logarithm of real GDP per worker.

Proposition 1. There exists a unique competitive equilibrium. In this equilibrium, the logarithm

of real GDP per worker, y = ln (Y ), is given by

y =

n∑
i=1

µiλi + α lnK, (6)

where

µ = {µi}i = [I − Γ]−1β, n× 1 vector of multipliers

λ = {λi}i = {ln Λi}i, n× 1 vector of sectoral log-productivity coefficients

Proof. The proof of Proposition 1 is provided in the Appendix.

Due to the Cobb-Douglas structure of our economy, log real GDP per worker can be represented

by an aggregate log-linear production function akin to the one used in standard development ac-

counting (see, e.g., Caselli, 2005). It depends in a log-linear fashion on (i) aggregate TFP and (ii)

the capital share in GDP α multiplied by the log capital stock per worker. In contrast to standard

development accounting, aggregate log TFP is not a blackbox but instead depends on the underly-

ing (exogenous) economic structure. It is given by a weigthed average of sectoral log TFPs λi with

sectoral IO multipliers µi as weights. Thus, the impact of each sector’s productivity on aggregate

output is proportional to the value of the sectoral IO multiplier µi. This means that the positive

effect of higher sectoral productivity on aggregate value added is stronger in sectors with larger

multipliers.

The vector of sectoral multipliers, in turn, is determined by the features of the IO matrix through

the Leontief inverse,15 [I − Γ]−1, and the vector of value-added shares β. A typical element lji of

the Leontief inverse can be interpreted as the percentage increase in the output of downstream

15Observe that in this model the Leontief inverse matrix is well-defined since CRS technology of each sector implies
that γi < 1 for any i ∈ 1 : n. According to the Frobenius theory of non-negative matrices, this means that the
maximal eigenvalue of Γ is bounded above by 1. This, in turn, implies the existence of [I − Γ]−1.
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sector i following a one-percent increase in productivity of upstream sector j.16 Multiplying the

Leontief inverse by the vector of value-added weights β adds up the effects of sector j on all the

other sectors in the economy, weighting each using sector by its share in aggregate valued added βi.

Thus, a typical element of the resulting vector of IO multipliers reveals how a one-percent increase

in productivity of sector j affects the overall value added in the economy.

The vector of sectoral multipliers can be written as

µ = [I − Γ]−1β =

(
+∞∑
k=0

Γk

)
β = β + Γβ + (Γ)2β + ... (7)

where the jth element is the sector-j multiplier. Each sectoral multiplier is an infinite sum: the

first term βj is the direct impact of a shock to sector j on aggregate value added. Thus, ceteris

paribus, sectors with higher value added shares have larger multipliers. The other terms of the

infinite sum correspond to effects that travel through the IO network. In particular, the first-order

term is the direct impact of the sector-j shock on the using sectors:
∑n

i=1 γjiβi is a weighted average

of the i = 1, .., n using sectors’ cost shares γji for sector j’s output, with weights corresponding to

the value-added shares of the using sectors. Thus, sectors whose output is more important as an

input of all other sectors have larger sectoral multipliers. The higher-order terms correspond to the

indirect effects of productivity shocks: e.g., if sector j supplies to k which in turn supplies to l,

the second-order effect of raising productivity in sector j is the impact on l (and all other sectors

indirectly linked to j): j’s productivity shock increases the output of the downstream sector k and

hence raises the output in sector l, which uses k’s output as an input. The multiplication with βl

converts the increase in output of sector l into value added.

2.3 Conceptual Issues of Cross-country Welfare Comparisons

Suppose we have data on real GDP per worker Ys, sectoral multipliers µs, sectoral log TFP levels

λs, and aggregate capital stocks per worker Ks for s = 1, ...,m countries. In order to match exactly

the data, both the IO matrices Γs and the vectors of final expenditure shares βs need to be country-

specific. At the same time, expenditure-based real GDP per worker in country s, Ys, conceptually

corresponds to an empirical measure of utility of consumers in each country, Ys = us. Indeed, as we

showed in section 2.1, in each country s, the expenditure Es = Ps · us and hence, Ys = Es/Ps = us

with Ps =
∏
i(pis)

βis and us =
∏
i(
cis
βis

)βis . When consumers residing in different countries do not

have the same utility function, welfare comparisons across countries become a tricky issue because

cardinal utility comparisons across agents who do not share a common utility function are not

16In general, sectoral shocks also affect upstream production through a price and a quantity effect. For instance,
with a negative shock to a sector, (i) its output price increases, raising its demand for inputs; and (ii) its production
decreases, reducing its demand for inputs. With Cobb-Douglas production technologies, however, these two effects
cancel out.
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meaningful. In fact, in order to measure the utility a country-s consumer would get from residing

in country k, we would need to deflate the expenditure of country k with the country-s consumer’s

optimal price index.17 With m countries this procedure would give a different set of welfare levels

(real GDPs) for each utility function (m different measures of real GDP for each country) whose

ranking across countries is not necessarily the same.

Faced with this problem, we need to abandon the possibility of preference heterogeneity across

countries and construct instead an artificial reference consumer as an average of the individual

countries’ consumers.18 Of course, this leads to a discrepancy between the actual and constructed

expenditure shares in each country and hence, will not allow fitting the data perfectly. However,

we believe that this is an acceptable price to pay for making cross-country welfare comparisons

possible, which is a key goal of this paper. Moreover, we show that the effect of mis-measurement

is small empirically and that our results are not sensitive to the precise way of constructing the

preferences of the reference consumer.

In defining this reference consumer, it seems reasonable to give consumers in each country the

same weight. We thus use, alternatively, the arithmetic β∗ = 1/n
∑

s βs and the geometric average

β∗ =
∏
s β

1/n
s of the expenditure shares βs across countries. This means that the expenditure

share allocated to each given sector corresponds to the cross-country average of the expenditure

shares for this sector. The so-defined β∗ determines the preferences of the reference household and

is used to construct multipliers µ∗ = [I − Γ]−1β∗.19 Observe that the Penn World Table also uses

implicitly the concept of a reference consumer when constructing PPP price indices of GDP with

the Geary-Khamis methodology.20 The Geary-Khamis approach uses each country’s quantities as

weights and thus gives more weight to consumers from larger economies. To match this approach,

as a third alternative, we also use a quantity-weighted average of countries’ expenditure shares to

17To give an example, suppose there are two countries, Italy and Germany. Italians care more about food than
about cars CI = c1/3f2/3, while for Germans it’s the other way round CG = c2/3f1/3. Assume that Germany produces
3 cars and 2 tons of food, and Italy 3 tons of food and 2 cars. Then the utility of Germans residing in Germany
CGG = 32/321/3, which equals the utility of Italians residing in Italy CII . If we want to compare welfare across
countries, we would need to evaluate Germans’ utility if they resided in Italy, UGI = 22/331/3 < UGG (Germans
don’t care that much about food) and the utility Italians would derive from living in Germany UIG = 22/331/3 < UII
(Italians don’t care that much about cars).

18In the Italian-German example above, a reference consumer has the utility function that equals an average of the
preferences of each country: Ur = c1/2f1/2. This reference consumer would be indifferent between living in Germany
and living in Italy since UrG = 31/221/2 = UrI = 21/231/2.

19To theoretically rationalize our approach of using average expenditure shares, we could assume that consumers in
each country have a common utility function but that actual expenditure shares correspond to expected expenditure
shares plus a random preference shock with mean zero. One could then use expected utility as a welfare measure. In
this case (log-)utility is given by

lnu =
∑
i

(β∗i + εi) ln(ci)−
∑
i

β∗i ln(β∗i ), (8)

where E(εi) = 0. The reference household maximizes expected utility E(lnu) =
∑
i β
∗
i ln(ci) −

∑
i β
∗
i ln(β∗i ), where

β∗i is the expected expenditure share of sector i.
20See Feenstra et al. (2015) for a description of the the price indices used in the Penn World Table and Diewert (1999)

for an in-depth discussion of the relationship between different methodologies for international price comparisons and
the existence of a reference consumer.
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compute the expenditure shares of the reference consumer. In this average, the weight of each

country corresponds to its share in world’s expenditure for sector i.

2.4 Decomposing Variation in Real GDP per Worker

For a reference household with preferences u =
∏n
i=1

(
ci
β∗i

)β∗i
log real income of a given country

predicted by the model can be written as

ymodel =
n∑
i=1

λiµi + α ln(K) = nµ̄λ̄+ nCov(λ, µ) + α ln(K), (9)

where µ̄ = 1/n
∑n

i=1 µi is the arithmetic average of sectoral multipliers, λ̄ = 1/n
∑n

i=1 λi is the

arithmetic average of sectoral log TFPs and Cov(λ, µ) is the covariance between sectoral log TFPs

and multipliers within a given country.21 Thus, according to the model, ceteris paribus countries

have higher GDP per worker when average log TFP levels and average multipliers are larger. Impor-

tantly, income per worker is also higher when TFP is larger than average in high-multiplier sectors,

so that log TFP levels and multipliers are positively correlated.

While the model can hopefully explain a large part of the variation in GDP per worker across

countries, it will certainly not be able to fit the data perfectly. There are two main reasons for

this. Most importantly, there is measurement error: all of the different objects that appear in (9),

i.e. multipliers, sectoral TFP levels, capital stock and income per worker are likely to suffer from

measurement error. Second, we impose some restrictions that are counterfactual: final expenditure

shares β∗ and the capital share in GDP α are imposed to be identical across countries. We therefore

add a residual ε = ydata − ymodel.

ydata = nµ̄λ̄+ nCov(λ, µ) + α ln(K) + ε (10)

The measurement error is probably more severe for low-income countries, leading to a negative

correlation between ydata and ε.

Next we would like to decompose the variation of log GDP per worker into the various compo-

nents of (10). Since the terms on the right-hand side are correlated, there exists no unique variance

decomposition. A convenient way to decompose the variance of log GDP per worker is to use

regressions. In particular,22

V ar(ydata) = Cov(nµ̄λ̄, ydata) + Cov[nCov(λ, µ), ydata] + Cov[α ln(K), ydata] + Cov[ε, ydata] (11)

21The empirical covariance is computed as Cov(λ, µ) = 1
n−1

∑n
i=1 (µi − µ̄)

(
λi − λ̄

)
.

22We use V ar(X) = Cov(X,X) and Cov(X + Y,Z) = Cov(X,Z) + Cov(Y,Z).
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Thus,

1 =
Cov(nµ̄λ̄, ydata)

V ar(ydata)
+
Cov[nCov(λ, µ), ydata]

V ar(ydata)
+
Cov[α ln(K), ydata]

V ar(ydata)
+
Cov[ε, ydata]

V ar(ydata)
(12)

This decomposition is equivalent to looking at the coefficients obtained from independently regress-

ing each term on the right-hand side of (10) on ydata. Since the terms on the right-hand side of

(10) sum to ydata and OLS is a linear operator, the coefficients sum to one. So the decomposition

amounts to asking, “When we see a one percent higher ydata in one country relative to the average

of the countries in the sample, how much higher is our conditional expectation of α lnK, how much

higher is our conditional expectation of nµ̄λ̄, and how much does our conditional expectation of

nCov(λ, µ) change?”

2.5 Measuring Sector-specific Productivity

By our assumption, production functions in a given sector vary across countries due to differences

in the importance of sectoral linkages – the γjis vary across countries for a given sector-pair ij.

Computing a measure of productivity (TFP) that is comparable across countries when countries

have different production functions in a given sector is methodologically challenging. A set of basic

requirements for TFP comparisons across countries is the following: (i) the productivity measure

should be unique when holding constant the reference country; (ii) it should be invariant to changes

in units; (iii) it should be transitive, i.e., computing the productivity of country j relative to l

should give the same number as the one obtained by first comparing j to k and then k to l.

To provide an example for this problem, note that just taking ratios of outputs and inputs for a

given pair of countries – like in the development-accounting literature (e.g. Caselli, 2005 ) – is not

invariant to changes in units when the two countries have different output elasticities of inputs.

Thus, productivity of any two countries in a given sector has to be compared while holding the

production function constant. But this raises another problem: productivities can be computed

with the production function of country k, the one of country l or the one of any other country.

With m countries, this gives m productivity measures for a given country-sector pair, and thus, the

so-obtained productivity is not unique. To address these problems, we borrow the approach from

Caves, Christensen and Diewert (1982) who have devised a methodology that satisfies requirements

(i)-(iii) for translog production functions. Since Cobb-Douglas is a special case of the translog

function when the second-order terms are zero,23 we can use their methodology and adapt it to our

23In general, the translog production function for an economic entity (country or sector) s that produces the vector
of outputs {qsk}Kk=1 using the vector of inputs {Xs

i }ni=1 can be written as

αs0 +

J∑
j=1

αsj ln qsj +

n∑
i=1

βsi lnXs
i + 2nd order terms = 1.
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special case, so as to derive our measure of sector-specific productivity.

Without loss of generality, consider for simplicity the Cobb-Douglas technology with a composite

input Xis, qis = Λis

(
Xis
αXis

)αXis
, where i denotes a sector and s denotes a country. Let us define

the productivity of country k relative to l in sector i using country l’s production function as a

base as follows: λik = Λikl/Λill, where Λikl is defined by qik = Λikl(Xik/αXil)
αXil , and Λill = Λil.

Essentially, Λikl is a TFP parameter that makes the sector i’s output of country k producible

with own input levels of country k and the production function of l. Similarly, we can define

λil = Λikk/Λilk, the productivity of country k relative to l in sector i using country k’s production

function as a base. Then lnλik ≡ (ln qik− ln qil)−αXil(lnXik− lnXil) and lnλil = (ln qik− ln qil)−

αXik(lnXik − lnXil). In this way, we can construct m pairs of different productivity indices (λik,

λis) for each sector-country pair ik (using country k and country s as a base, s ∈ 1 : m). Next, for

each of these pairs we define λiks as the geometric mean of λik and λis. This is then the bilateral

base-country invariant definition of the productivity of k relative to s in sector i:

lnλiks = (lnλik + lnλis)/2

Plugging in the defined lnλik and lnλis, we obtain:

lnλiks = (ln qik − ln qis)−
1

2
(αXis + αXik)(lnXik − lnXis) (13)

However, the so-defined λiks is not transitive, i.e. lnλiks 6= lnλikl − lnλisl. Therefore, we next

define lnλik – the productivity of country k in sector i relative to an average of all other countries

s = 1, ...,m – as the geometric average of λiks. It corresponds to the geometric average of all

bilateral base-country invariant productivity comparisons for a given country k.

lnλik =
1

m

m∑
s=1

lnλiks (14)

Finally, we define the multilateral productivity index as:

lnλ∗ikl ≡ lnλik − lnλil =
1

m

m∑
s=1

lnλiks −
1

m

m∑
s=1

lnλils (15)

This multilateral productivity index corresponds to log TFP of country k relative to country l

in sector i, where both countries’ productivity is measured as the geometric average of all bilateral

productivity comparisons.

Plugging (13) into this definition gives our measure of the multilateral sector-specific Cobb-
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Douglas productivity index:24

lnλ∗ikl = ln qik − ln qil −
1

2
(αXik + αXi)(lnXik − lnXi) +

1

2
(αXil + αXi)(lnXil − lnXi), (16)

where αXi = 1
m

∑m
s=1 αXis, and lnXi = 1

m

∑m
s=1 lnXis.

Generalizing the production function to many inputs, and assuming (i) constant returns to scale

and (ii) perfect competition without distortions, we note that the output elasticities αXis correspond

to the cost shares {γji}j , α and 1 − α of individual inputs. These can be directly taken from the

data: IO coefficients and sectoral factor shares in gross output. In our empirical application, we will

take the U.S. as the base country (l = U.S.). Thus, the resulting set of productivity indices {lnλ∗isl}

will represent log TFP of each country s ∈ 1 : m relative to the U.S. in each sector i ∈ 1 : n.

3 Dataset and Descriptive Analysis

3.1 Data Sources and Description

IO tables measure the flow of intermediate products between different plants, both within and

between sectors. The ji’th entry of the IO table is the value of output from establishments in

industry j that is purchased by different establishments in industry i for use in production.25

Dividing the flow of industry j to industry i in the IO table by gross output of industry i, one

obtains the IO coefficient γji, which states the cents of industry j’s output used in the production

of each dollar of industry i’s output.

In order to construct a dataset of IO tables for a range of low- and high-income countries,

to compute sectoral TFP levels, and to obtain information on countries’ GDP per worker and

factor endowments, we combine information from two datasets: the World Input-Output Database

(WIOD), February 2012 release (Timmer, 2012), and the Penn World Table (PWT), Version 8.0

(Feenstra et al., 2015).

The first dataset, WIOD, contains IO data and sectoral socio-economic accounts for 38 countries

classified into 35 sectors. We use WIOD data for year 2005 because for this year we have PPP price

indices. The list of countries and sectors is provided in Appendix Tables A-1 and A-2.26

WIOD IO tables are available in current national currency at basic prices.27 In our main

specification, we compute IO coefficients as the value of domestically produced plus imported inter-

mediates divided by the value of gross output at basic prices.28 Sectoral multipliers are computed

24See Appendix for details.
25Note that intermediate outputs must usually be traded between establishments in order to be recorded in the IO

tables. Therefore, flows that occur within a given plant are not measured.
26We drop Indonesia from the sample because the data reported by WIOD for this country are problematic.
27Basic prices exclude taxes and transport margins.
28In a robustness check, we separate domestically produced from imported intermediates and define domestic
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as µ = {µi}i = [I − Γ]−1β∗. The WIOD data also contain all the necessary information to com-

pute gross-output-based sectoral total factor productivity for 35 sectors: nominal gross output and

material use, sectoral capital stocks and labor inputs, sectoral factor payments to labor, capital

and intermediates disaggregated into 35 inputs. Crucially, WIOD also provides purchasing power

parity (PPP) deflators (in purchasers’ prices) for sector-level gross output for the year 2005 that

we use to convert nominal values of outputs and inputs into real units that are comparable interna-

tionally. This allows us to compute TFP levels at the sector level using the methodology explained

above.29 The PPP deflators have been constructed by Inklaar and Timmer (2012) and are consis-

tent in methodology and outcome with the PWT 8.0. They combine expenditure prices and levels

collected as part of the International Comparison Program (ICP) with data on industry output,

exports and imports and relative prices of exports and imports from Feenstra and Romalis (2014).

The authors use export and import values and prices to correct for the problem that the prices of

goods consumed or invested domestically do not take into account the prices of exported products,

while the prices of imported goods are included. To our knowledge, WIOD combined with these

PPP deflators is the best available cross-country dataset for computing sector-level productivities

using production data.

The second dataset, PWT, includes data on real GDP in PPP, the number of workers, as well

as information on aggregate PPP price indices for exportables and importables for the same set

of countries as WIOD in the year 2005. Our main measure of real GDP is RGDPE, real GDP in

PPP prices computed from the expenditure side. This measure is most appropriate to compute

welfare-relevant real GDP because it measures differences in the standard of living across countries

(Feenstra, et al., 2015). Alternatively, we have used RGDPO, real GDP in PPP prices computed

from the production side. This variable measures the production capacity of each country. For our

sample, the difference between these measures is negligible and our results are basically identical

with both measures. To construct aggregate physical capital stocks and employment of each country,

we add up the sectoral capital stocks and employment numbers from WIOD. Results are very similar

if information on the number of workers and capital stocks is instead taken directly from the PWT.

We prefer aggregating information from WIOD since this guarantees that the sectoral values are

consistent with the aggregate values. Finally, we use aggregate price indices for exports and imports

in the open-economy extension of our model, which we discuss in a robustness check.

IO coefficients as the value of domestically produced intermediates divided by the value of gross output, while IO
coefficients for imported intermediates are defined as the value of imported intermediates divided by the value of gross
output. We show in the robustness section that this choice does not affect our results .

29The WIOD data comprise socio-economic accounts that are defined consistently with the IO tables. We use
sector-level data on gross output and physical capital stocks in constant 1995 prices, the price series for investment,
and labor inputs (employment). Using the sector-level PPPs for gross output, we convert nominal gross output and
inputs into constant 2005 PPP prices. Furthermore, using price series for investment from WIOD and the PPP price
index for investment from PWT, we convert sector-level capital stocks from WIOD into constant 2005 PPP prices.
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3.2 Descriptives of IO Structure

We now provide some descriptive statistics of IO structure, as summarized by the distributions of

sectoral multipliers. We report these statistics by income level, classifying countries with a per-

capita GDP of less than 5000 PPP Dollars as low-income, those with 5,000-2,0000 PPP Dollars as

medium-income, and those with more than 20,000 PPP Dollars as high-income. Figure 1 reports

kernel density plots of the distribution of multipliers pooled across countries and sectors. For all

income levels, the distributions are skewed with a long right tail: while most sectors have low

multipliers, there are a few high-multiplier sectors. In addition, low-income countries’ distribution

has more mass in the right tail.30 Table 1 reports moments of the distribution of multipliers.

The mean sectoral multiplier is 0.057, the median multiplier is 0.049, and the 95th-percentile of

multipliers is 0.133. In Appendix Figure A-1, we plot average multipliers by sector.31

Figure 1: Distribution of sectoral IO multipliers by income level.

Sample Mean Std. 5th Pct. 10th Pct. Median 90th Pct. 95th Pct.

all 0.057 0.042 0.003 0.011 0.049 0.112 0.133
low income 0.061 0.400 0.006 0.011 0.057 0.115 0.143
med income 0.057 0.039 0.004 0.011 0.049 0.110 0.130
high income 0.056 0.045 0.003 0.011 0.049 0.116 0.136

Table 1: Summary statistics of sectoral IO multipliers.

30In the working paper version, we also report descriptive statistics for GTAP data, which comprises a larger sample
and includes many more low-income countries. These features of the multipliers’ distribution also hold in the larger
GTAP sample and are even more pronounced.

31The high-multiplier sectors in all countries are mostly service sectors such as Business Services, Real Estate,
Financial Services, Wholesale Trades that provide inputs to most other sectors of the economy.
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3.3 Descriptives of TFP

Next, we report descriptive statistics of sectoral TFP levels. Figure 2 provides kernel density plots of

sectoral log TFP relative to the U.S. by income level. The distribution of log TFP is approximately

normal. Moreover, low-income countries have a distribution of log TFPs with a significantly lower

mean and a larger variation across sectors than high-income countries. Table 2 reports means and

standard deviation of log TFP relative to the U.S., as well as the within-country correlation between

log TFPs and multipliers. While in low-income countries mean TFP is around 60 percent of the

U.S. level (0.6=exp(-0.517)), with a large standard deviation across sectors, mean sectoral TFP

in high-income countries is around 90 percent of the U.S. level (0.9=exp(-0.104)) with much less

dispersion across sectors. Interestingly, in low-income countries, log TFP levels of high-multiplier

sectors are above their average TFP level relative to the U.S. (the correlation between log TFPs and

multipliers is positive), while in rich countries log TFP levels are below average in high-multiplier

sectors (the correlation between log TFPs and multipliers is negative).

Figure 2: Distribution of log TFP by income level

Sample Obs. Mean Std. Corr.
log TFP log TFP log TFP, mult.

(within) (within)

all 1,295 -0.206 0.413 -0.060**
low income 70 -0.517 0.676 0.363***
mid income 490 -0.316 0.475 -0.015
high income 735 -0.104 0.347 -0.224***

Table 2: Summary statistics of sectoral log TFPs. *** (**) indicates statistical significance at the 1-percent
(5-percent) level.
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4 Empirical Analysis

We now decompose the variation of log real GDP per worker into its different components. In the

calibration we set the capital share in GDP α = 1/3, as standard in the development accounting

literature (see Caselli, 2005). Moreover, we set n, the number of sectors, equal to 35 because this

corresponds to the number of sectors in WIOD. We first present plots of each of the components on

the right-hand side of equation (9) against log real GDP per worker (relative to the U.S.). Figure 3

plots α lnK against log real GDP per worker relative to the U.S., while Figure 4 plots λ̄, mean log

TFP relative to the U.S. of each country, against log real GDP per worker. Not surprisingly, both

capital stock per worker and average log TFP are strongly positively correlated with log GDP per

worker. Figure 5 presents a similar plot for average multipliers µ̄. Average multipliers tend to be

somewhat larger in poor countries, but the relationship between average multipliers and income per

worker is not very strong. There are also some low-income countries with low average multipiers,

such as Brazil (BRA) and India (IND). Figure 6 plots the within-country covariance between log

TFP and multipliers Cov(λ, µ) against log real income per worker: this relationship is strongly

negative. While low-income countries, such as China (CHN) and India, tend to have higher than

average TFP levels in high-multiplier sectors, in rich countries, sectors with high multipliers tend

to have below-average TFP levels.

Table 3 reports the result of decomposing the variance of log GDP per worker using (11). The

first row reports results for for the case when β∗ is defined by an arithmetic average of countries’

expenditure shares, while the second row reports the results for the geometric average and the third

one for a weighted average where the weights correspond to each country’s produced quantities. The

model with the arithmetic-average expenditure shares explains a remarkable 90% of the variance

of log GDP per worker in the data. The 90% of variance explained by the model can be split into

49% due to variation in capital per worker, 49% due to variation in the product of average log TFP

and average multiplier and minus 8% due to variation in the covariance term between log TFP and

multipliers. The magnitude of the negative covariance term implies that if poor countries did not

have above average productivity levels and rich countries did not have below average productivity

levels in high-multiplier sectors, the actual variation in GDP per worker in this sample would be

8% larger than it actually is. Note that poor countries have a very large variation in relative TFP

levels across sectors. The very low TFP levels of these countries in some of their sectors are however

mitigated by the fact that these sectors have low multipliers, i.e. they are not very connected to

the rest of the economy. At the same time, those sectors that are particularly important for other

sectors (high-multiplier sectors) have above-average productivity levels. By contrast, in most rich

countries (Western Europe and Japan) TFP levels relative to the U.S. are lower than average in high-
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multiplier sectors, which significantly reduces their real GDP per worker. Finally, the remaining

10% residual variation is due to measurement error, which is negatively correlated with income per

worker.

Note that compared to the 50-50 split of income variation into production factors and produc-

tivity found in the development accounting literature, the role of productivity is reduced, since

the negative covariance term is part of aggregate TFP. We find that relative to the total varia-

tion explained by the model, cross-country income differences can be split roughly into 45% due to

aggregate TFP differences and 55% due to differences in production factors per worker.32

The model with β∗ computed as geometric average gives similar results and further reduces

the role of aggregate productivity. In particular, the covariance term continues to be minus 8%,

while the variation explained by average TFP and multipliers is reduced to 42%. Finally, when β∗

is computed as a quantity-weighted average, the covariance between TFP and multipliers is a bit

less important compared to the other cases (it reduces income variation by 6%). Thus, overall, the

results are robust to the specific way of computing expenditure weights of the reference consumer.

Figure 3: α ln(K) vs. log income per worker rel. U.S.

Table 3: Variance decomposition of log real GDP per worker – baseline model

fraction of variance explained by
model α lnK n ∗ λ̄µ̄ n ∗ cov(λ, µ) residual

arithmetic mean 0.90 0.49 0.49 -0.08 0.10
geometric mean 0.83 0.49 0.42 -0.08 0.17
weighted mean 0.92 0.49 0.49 -0.06 0.08

3245% ≈ (49− 8) ∗ 100/90.
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Figure 4: λ̄ vs. log income per worker rel. U.S.

Figure 5: µ̄ vs. log income per worker rel. U.S.
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Figure 6: n ∗ Cov(λ, µ) vs. log income per worker rel. U.S.

5 Robustness Checks

In this section, we report the results of a number of robustness checks in order to show that our

results do not hinge on the specific assumptions adopted in the model. We consider the following

modifications of our benchmark setup. First, we allow IO multipliers to depend on implicit tax

wedges or distortions. Second, we account for imported intermediate inputs. Third, we extend our

model to sectoral CES production functions. Finally, we allow for skilled and unskilled labor as

separate production factors. We show that none of these modifications changes the basic conclusions

of the baseline model.

5.1 Wedges

One important concern is that the empirically observed IO coefficients do not just reflect tech-

nological input requirements but also sector-specific distortions or wedges τi in the production of

intermediates. To see this, consider the following maximization problem of an intermediate pro-

ducer:

max
{dji,ki,li}

(1− τi)piΛi
(

1

1− γi
kαi l

1−α
i

)1−γi (d1i
γ1i

)γ1i (d2i
γ2i

)γ2i
· ... ·

(
dni
γni

)γni
−

n∑
j=1

pjdji − rki − wli,

where {pi} is taken as given (τi and Λi are exogenous). Sector-specific wedges are assumed to reduce

the value of sector i’s production by a factor (1 − τi), so that τi > 0 implies an implicit tax and

τi < 0 corresponds to an implicit subsidy on the production of sector i. The first-order condition
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w.r.t. dji is given by

(1− τi)γji =
pjdji
piqi

, j ∈ 1 : n

Thus, a larger wedge in sector i implies lower observed IO coefficients in this sector since firms in

sectors facing larger implicit taxes demand less inputs from all other sectors. Separately identifying

wedges τi and technological IO coefficients γji is an empirical challenge, which requires to impose

additional restrictions on the data. Observe that τi is the same for all inputs j demanded by a given

sector i. Thus, introducing a country index s and summing across inputs j for a given country, we

obtain

(1− τis)
∑
j

γjis ≡ (1− τis)γis =
∑
j

pjsdjis
pisqis

, i ∈ 1 : n

Now, if we restrict the total technological intermediate share of a given sector i, γis, to be the same

across countries, we can identify country-sector-specific wedges as

(1− τis) =
∑
j

pjsdjis
pisqis

1

γi
, i ∈ 1 : n (17)

Observe that individual IO coefficients γjis are still allowed to differ across countries in an arbitrary

way. According to equation (17), countries with below-average intermediate shares
∑

j
pjsdjis
pisqis

in a

certain sector face an implicit tax in this sector, while countries with above-average intermediate

shares receive an implicit subsidy. Taking logs of equation (17), we obtain:

ln

∑
j

pjsdjis
pisqis

 = ln(γi) + ln(1− τis) (18)

Given (18), we regress log intermediate input shares of each country-sector pair on a set of sector-

specific dummies to obtain estimates of the technological intermediate shares ln(γi) and then back

out ln(1 − τis) as the residual. Average intermediate shares γi are slightly lower for low-income

countries. Low-income countries also have a larger fraction of sectors with very low intermediate

shares and a lower fraction with high intermediate shares. Consequently, they have a larger frac-

tion of sectors with relatively high wedges, which corresponds to more mass in the left tail of the

distribution of ln(1 − τis). This is clear from Figure 7, which plots the distribution of ln(1 − τis)

by income level for the WIOD sample. Given wedges τis, we construct IO coefficients adjusted for

wedges as γjis =
pjsdjis
pisqis

1
(1−τis) . We then recompute sectoral productivities and IO multipliers using

these adjusted coefficients.

In the presence of wedges the expression for log GDP per worker also needs to be modified

since wedges distort decisions and thus reduce income per worker. In particular, there is now an

additional term
∑n

i=1 µi ln(1− τi). Higher distortions (lower values of ln(1− τi)) reduce income per
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Figure 7: Distribution of log(1-wedges) by income level

worker by more if they occur in high-multiplier sectors.

Proposition 2. In the unique competitive equilibrium the logarithm of real GDP per worker, y, is

given by

y =

n∑
i=1

µiλi +

n∑
i=1

µi ln(1− τi) + α lnK, (19)

where

µ = {µi}i = [I − Γ]−1β∗, n× 1 vector of multipliers

λ = {λi}i = {ln Λi}i, n× 1 vector of sectoral log-productivity coefficients

τ = {τi}i, n× 1 vector of sectoral wedges

This expression can be further decomposed as:

ymodel = nµ̄λ̄+ nCov(λ, µ) + nµ̄ ln (1− τ) + nCov(ln(1− τ), µ) + α ln(K) (20)

Figure 8 plots the covariance of ln(1−τ) and multipliers µ against log GDP per worker: while rich

countries tend to have lower implicit taxes or even provide implicit subsidies to their high-multiplier

sectors, low-income countries tend to have high implicit taxes in these sectors.

Finally, in Table 4 we provide a variance decomposition similar to (11), with two additional

terms, that account for the role of wedges. We first discuss results for the model where the reference

consumer’s expenditure shares are given by the arithmetic average of countries’ expenditure shares.
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Figure 8: n ∗ Cov(ln(1− τ), µ) vs. log income per worker rel. U.S.

The fraction of the total variance of log GDP per worker explained by this model is very similar to

the one of the baseline model (91% compared to 90%). The fraction of the variance explained by

variation in the covariance between TFP and multipliers is also very similar (minus 9% vs. minus

8%). Like in the baseline model, the negative contribution of this term is a consequence of TFP

and multipliers being positively correlated in poor countries and negatively in rich ones. However,

while the baseline model attributes 49% of the variance to differences in the product of average log

TFP and average multiplier, the model with wedges attributes only 44% to this term. In addition,

the positive correlation between wedges and multipliers in poor countries increases the variance of

log GDP per worker by 5%. Finally, the fact that average wedges are also higher in poor countries

increases income differences by another 2%. Thus, if we attribute the fraction of income variance

due to wedges as being part of variation due to aggregate TFP, we conclude that the variance of

model-based income is split roughly according to 46% due to aggregate TFP differences and 54%

due to production factors,33 which is close to the analogous finding in our benchmark setting. The

results are quantitatively very similar for the models where instead of the arithmetic average of

countries’ expenditure shares, we use the geometric average or the quantity-weighted average.

Table 4: Variance decomposition of log GDP per worker – model with wedges

fraction of variance explained by

model α lnK nλ̄µ̄ nCov(λ, µ) nln(1− τ)µ̄ nCov(ln(1− τ), µ) residual
arith. mean 0.91 0.49 0.44 -0.09 0.02 0.05 0.09
geo. mean 0.84 0.49 0.37 -0.09 0.02 0.05 0.16
w. mean 0.94 0.49 0.44 -0.08 0.02 0.05 0.06

3346% ≈ (44− 9 + 2 + 5) ∗ 100/91.
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5.2 CES Production Function

Another potential concern is that sectoral production functions are not Cobb-Douglas, but instead

feature an elasticity of substitution between intermediate inputs different from unity. If this were the

case, IO coefficients would no longer be sector-country-specific constants γjis but would instead be

endogenous to equilibrium prices, which would reflect the underlying productivities of the upstream

sectors. While it has been observed that for the U.S. the IO matrix has been remarkably stable

over the last decades despite large shifts in relative prices (Acemoglu et al., 2012) – an indication of

a unit elasticity, – in this robustness check we briefly discuss the implications of considering a more

general CES sectoral production function. The sectoral production functions are now given by:

qi = Λi

(
1

1− γi
kαi l

1−α
i

)1−γi
Mγi
i , (21)

where Mi ≡
(∑N

j=1 γjid
(σ−1)
σ

ji

) σ
(σ−1)

. The rest of the model is specified as in section 2.1.

With CES production functions the equilibrium cannot be solved analytically, so one has to

rely on numerical solutions. However, it is straightforward to show how IO multipliers are related

to sectoral productivities in this case. From the first-order conditions it follows that the relative

expenditure of sector i on inputs produced by sector j relative to sector k is given by:

pjdji
pkdki

=

(
pj
pk

)1−σ (γji
γki

)
(22)

Thus, if σ > 1 (σ < 1), each sector i spends relatively more on the inputs provided by sectors

that charge lower (higher) prices. Recall that sectors whose output accounts for a larger fraction

of other sectors’ spending have higher multipliers (see equation (7)). Moreover, since prices are

inversely proportional to productivities, sectors with higher productivity levels charge lower prices.

Consequently, when σ > 1, sectoral multipliers and productivities should be positively correlated

in all countries, while when σ < 1, the opposite should be true. We confirm these results in

unreported simulations. However, these predictions are not consistent with our empirical finding

that multipliers and productivities are positively correlated in low-income countries, while they are

negatively correlated in high-income ones. Consequently – unless the elasticity of substitution differs

systematically across countries – the data on IO tables and sectoral productivities are difficult to

reconcile with CES production functions.

5.3 Traded Intermediate Goods

So far, we have treated all intermediate inputs as being domestically produced. Here, we extend

our model and differentiate between domestically produced and imported intermediate inputs, while

keeping the Cobb-Douglas structure of sectoral production functions. The technology of sector i is
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now given by

qi = Λi

(
1

1− γi − σi
kαi l

1−α
i

)1−γi−σi
(
d1i
γ1i

)γ1i
· ... ·

(
dni
γni

)γni

·
(
f1i
σ1i

)σ1i

· ... ·
(
fni
σni

)σni

,

where dji is the quantity of the domestic good j used in the production of sector i and fji is the

quantity of imported good j used by sector i. γi =
∑n

j=1 γji and σi =
∑n

j=1 σji are the respective

shares of domestic and imported intermediate goods in the total input use of sector i and α is the

share of capital in sectoral value added. We assume that output of sector i can be used either for

final consumption, ci, as a domestic intermediate input dij , or as an exportable xi.

qi = ci +
n∑
j=1

dij + xi i = 1 : n

We impose balanced trade, so that the value of exported intermediates must be equal to the value

of imported intermediates.
n∑
j=1

pjxj =

n∑
i=1

n∑
j=1

pjfji,

where pj is the domestic and export price of intermediate good j and pj is the import price of

intermediate good j. Because the domestic economy is assumed to be small, these prices are

exogenous. Let us denote by ρj =
pj
P the ratio of the import price of intermediate good j relative

to the aggregate consumer price index.34 Because we only have data on the aggregate import price

index from the Penn World Table, we assume that import prices do not vary across sectors: ρj = ρ.

In the Appendix, we show that with these modifications the aggregate production function for log

GDP per worker can be expressed as follows:

Proposition 3. In the unique competitive equilibrium, the logarithm of real GDP per worker, y, is

y =
1∑n

i=1 µi(1− σi − γi)

(
n∑
i=1

µiλi − ln ρ
n∑
i=1

µiσi

)
+ α lnK, (23)

34We continue to normalize P to unity. In the empirical analysis we use the price index of imports relative to the
aggregate consumer price index, as provided in the data.
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where

µ = {µi}i = [I − Γ]−1β∗, n× 1 vector of multipliers

λ = {λi}i = {ln Λi}i, n× 1 vector of sectoral log-productivity coefficients

Γ = {γji}ji, n× n input-output matrix for domestic intermediates

σ = {σi}, n× 1 vector of imported intermediate shares

γ = {γi}, n× 1 vector of domestic intermediate shares

ρ relative price of imported intermediates

Compared to the baseline model, there are a few modifications. First, sectoral multipliers µ

depend only on the domestic IO coefficients γji, since foreign production is unaffected by changes

in domestic productivity. Second, while
∑n

i=1 µi(1− γi) = 1 in the model with only domestic inter-

mediates, the new term
∑n

i=1 µi(1− σi − γi) is smaller than one,35 and this amplifies the effect of

sectoral multipliers µ. The intuition for this is as follows. What matters for the effect of multipliers

is not just the share of domestic intermediates γi but the total share of intermediates σi+γi. Indeed,

imported intermediates do not dilute multipliers because of our assumption of balanced trade: an

increase in productivity of a given sector increases exports, which in turn increases imports. Third,

income now depends negatively on ρ, the relative price of imported intermediates. When they be-

come more expensive, GDP is reduced because an increase in the price of imported intermediates

acts effectively as a negative supply shock. The magnitude of this effect depends on the weighted

average of imported intermediate shares σi, with multipliers µi as weights.

Figure 9 plots the term − ln ρ
∑n

i=1 µiσi against log GDP per worker: poor countries have a

much higher relative price of imported intermediates, leading to a positive correlation between this

term and log GDP per worker.

In Table 5 we report the results of our variance decomposition. It now has an additional term

which accounts for the effect of imported intermediates. We first discuss results for the model with

arithmetic-average expenditure shares. The model explains 94% of the variance of GDP per worker

in the data, which is 4% more than the baseline model. The fraction of variance explained by capital

per worker and average multiplier times average productivity is almost identical to the one in the

baseline model, while the role of the covariance term between multipliers and productivities increases

in absolute terms by 4% to minus 12%. The term reflecting the role of the price of intermediates,

− ln ρ
∑

i σiµi, is also important: it increases the variance of GDP per worker across countries by

10%. This is driven mostly by the fact that for low-income countries the relative price of imports

35Note that (a) this term is positive, and (b) by definition of multipliers,
∑
i µi(1−γi) = 1. Thus,

∑
i µi(1−γi−σi) =

1−
∑
i µiσi < 1.
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Figure 9: −ln(ρ)
∑

i µiσi vs. log income per worker rel. U.S.

is much higher than for rich countries, which reduces their level of GDP per worker significantly.

Again, computing expenditure shares as a geometric mean (row 2) or as a quantity-weighted mean

(row 3) gives very similar results. In the last case, though, the role of the covariance term between

TFP and multipliers is a bit smaller in magnitude (minus 9%).

Table 5: Variance decomposition of log GDP per worker – model with traded intermediates

fraction of variance explained by
model α ln(K) Anµ̄λ̄ AnCov(λ, µ) −A ln ρ

∑
i σiµi residual

arith. mean 0.94 0.49 0.47 -0.12 0.10 0.06
geo. mean 0.91 0.49 0.46 -0.13 0.09 0.09
w. mean 0.97 0.49 0.47 -0.09 0.10 0.03

A = [
∑n
i=1 µi(1− σi − γi)]

−1

5.4 Human Capital

In a final robustness check, we account for variation in human capital levels across countries and

sectors to make sure that our results are not biased by the omission of this factor. We thus modify

the sectoral production functions as follows:

qi = Λi

(
1

1− γi
kαi u

δ
i s

1−α−δ
i

)1−γi (d1i
γ1i

)γ1i (d2i
γ2i

)γ2i
· ... ·

(
dni
γni

)γni
, (24)

where ui is the number of unskilled workers and si is the number of skilled workers in sector i, and

where δ and 1−α−δ are, respectively, the income shares of unskilled and skilled workers in sectoral

value added. The rest of the model is assumed to be the same as in the baseline case. Denoting
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the aggregate amount of unskilled workers by U , the aggregate amount of skilled workers by S and

normalizing the total size of the workforce to unity, we obtain the following expression for log real

GDP per worker:

Proposition 4. In the unique competitive equilibrium, the logarithm of real GDP per worker,

y = ln (Y ), is

y =
n∑
i=1

µiλi + α lnK + δ lnU + (1− α− δ) lnS. (25)

In order to assess how the introduction of skilled and unskilled labor as separate production

factors affects our results quantitatively, we proceed as follows. We follow Caselli, Coleman and

John (2006) and define unskilled labor as workers with primary and lower secondary education and

skilled labor as workers with more than lower secondary education. WIOD provides for each sector

and country the factor inputs and income shares of workers separated by education category. We

recompute sectoral TFP levels with the methodology exposed in section 2.5 but we now separate

labor inputs of each sector into skilled and unskilled workers. To calibrate δ and (1 − α − δ), we

first compute for each country the income share of unskilled and skilled workers in GDP and then

take the arithmetic average across countries. Assuming that α = 1/3, this gives δ = 0.22 and

1−α− δ = 0.44. We also calculate aggregate stocks of unskilled and skilled workers by aggregating

sectoral labor inputs by skill level from WIOD.

Table 6 presents the results for variance decomposition of log real GDP per worker. Here, ykh

denotes the fraction of variance of log real GDP per worker explained by variation in the amount

of physical production factors per worker ykh = α lnK + δ lnU + (1 − α − δ) lnS. The remaining

terms are the same as in the baseline model. Using arithmetic averages of expenditure shares

for the reference consumer, we obtain that the model with human capital can explain 93% of the

variance in GDP per worker, a bit more than the baseline model. Compared to the baseline model,

the fraction of income variation explained by production factors also increases from 49 to 54%.

By contrast, the fraction of variation explained by average productivity times average multipliers

is reduced a bit, from 49 to 46%. Crucially, the negative contribution of the covariance term

between sectoral productivities and multipliers is unafffected: like in the baseline model, this term

reduces the variance in log GDP per worker by 8%. The other rows report results for the model

with expenditure shares obtained as the geometric mean and the quantity weighted mean. Results

remain very similar. We conclude that our findings are robust to accounting for variation in human

capital across countries.
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Table 6: Variance decomposition of log real GDP per worker – model with human capital

fraction of variance explained by

model ykh nµ̄λ̄ nCov(λ, µ) residual

arithmetic mean 0.92 0.54 0.46 -0.08 0.06
geometric mean 0.86 0.54 0.40 -0.08 0.14
weighted mean 0.94 0.54 0.46 -0.06 0.06

6 Counterfactual Experiments

We now present the results of a number of counterfactual experiments. We first investigate how

differences in TFP levels affect cross-country income differences before turning to the effects of

differences in IO linkages. For the first two counterfactuals we go back to our baseline model, while

for the third counterfactual we use the model with wedges.

In our first counterfactual exercise we eliminate all TFP differences between countries by setting

all sectoral productivities equal to the U.S. level. The result of this experiment is shown in Figure

10. It plots the counterfactual percentage change in income per worker of each country against log

GDP per worker. As can be seen from the figure, virtually all countries would gain if they had

the U.S. TFP levels. While gains are relatively modest for most high-income countries, bringing

sectoral TFPs to U.S. levels would almost double income per worker in countries like China (CHN)

or Romania (ROU).

Figure 10: Counterfactuals 1

In the second counterfactual exercise, we hold sectoral productivity levels fixed and instead set

the covariance between multipliers and log productivities, Cov(µ, λ), to zero in all countries. Figure

11 makes clear that a number of low-income countries, such as India and China would lose more than
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Figure 11: Counterfactuals 2

Figure 12: Counterfactuals 3
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15% of their income, with a number of Eastern European countries, like Poland (POL), Hungary

(HUN) and Estonia (EST) also affected very negatively. Instead many rich countries would gain

up to 10% of GDP per worker from this change. Why is this the case? From our estimates, poor

countries tend to have a positive covariance between multipliers and log TFPs, while rich countries

tend to have a negative one. This implies that poor countries are doing relatively well despite their

low average productivity levels, because they perform significantly better than average precisely

in those sectors that have a large impact on aggregate performance. The opposite is true in rich

countries, where highly connected sectors perform below average. Eliminating this link improves

aggregate outcomes in rich economies further, while hurting poor countries. The main reason for

negative correlations in rich countries is that they tend to have particularly large productivity gaps

with the U.S. in high-multiplier sectors, such as services. Setting the covariance between TFP

and multipliers to zero then effectively means bringing European productivity levels in the service

sectors to the U.S. level.

Finally, in the last counterfactual we use the model with wedges (see section 5.1) and set the

covariance between sectoral wedges and multipliers to zero. Figure 12 describes the result of this

exercise. On average low-income countries would gain in this counterfactual. In particular, coun-

tries like India, Brazil (BRA), Mexico (MEX) and Turkey (TUR) would see their income improve

significantly because they have large wedges in high-multiplier sectors that are very distortive. By

contrast, a number of high-income countries, such as Australia (AUS) and Ireland (IRL), would see

a significant reduction of their income because these countries currently provide implicit subsidies

to high-multiplier sectors that would vanish in the counterfactual.36

7 Conclusions

In this paper we have studied the role of IO structure and its interaction with sectoral productivity

levels in explaining income differences across countries. We have described and formally modeled

cross-country differences in the interaction of sectoral IO multipliers and productivities and shown

that they are important for understanding variation in real GDP per worker across countries. Poor

countries rely on a few highly connected sectors, which tend to have higher-than-average productiv-

ity levels. Their typical, low-productivity sectors are not strongly linked to the rest of the economy,

mitigating their impact on aggregate income. By contrast, in rich countries highly connected sectors

tend to have below-average productivity levels. At the same time, in low-income countries highly

connected sectors tend to be more distorted through high implicit tax rates, which significantly re-

duces aggregate income. These insights have important consequences for the design of development

36This positive effect of subsidies has to be interpreted cautiously because for simplicity wedges are modeled as a
pure waste, which implies that subsidies do not reduce resources available to other sectors.
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policies, which should focus on increasing productivity and reducing distortions in these key sectors.
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Appendix A: Proofs for the benchmark model and its extensions

Propositions 1 – 4 are particular cases of Proposition 5 that applies in a generic setting – with
sector-specific wedges, traded intermediates and division of labor into skilled and unskilled labor
inputs. A brief description of this economy, together with Proposition 5, its proof and conditions
on parameters that result in each of the particular cases (Propositions 1 – 4) are provided below.

• The technology of each of n competitive sectors is Cobb-Douglas with constant returns to
scale. Namely, the output of sector i, denoted by qi, is

qi = Λi

(
1

1− γi − σi
kαi u

δ
i s

1−α−δ
i

)1−γi−σi
(
d1i
γ1i

)γ1i
· ... ·

(
dni
γni

)γni

·
(
f1i
σ1i

)σ1i

· ... ·
(
fni
σni

)σni

,

where si and ui are the amounts of skilled and unskilled labor, dji is the quantity of the
domestic good j and fji is the quantity of the imported good j used by sector i. γi =

∑n
j=1 γji

and σi =
∑n

j=1 σji are the respective shares of domestic and imported intermediate goods in
the total input use of sector i and α, δ, 1−α− δ are the respective shares of capital, unskilled
and skilled labor in the remainder of the inputs.

• A good produced by sector i can be used for final consumption, ci, as an intermediate good
or exported abroad:

ci +

n∑
j=1

dij + xi = qi i = 1 : n

• Exports pay for the imported intermediate goods, and we impose a balanced trade condition:

n∑
j=1

pjxj =
n∑
i=1

n∑
j=1

pjfji,

where pj is the domestic and export price of intermediate good j and pj is the import price
of intermediate good j.

• Consumers have Cobb-Douglas utility:

u(c1, ..., cn) =
n∏
i=1

(
ci
βi

)βi
,

where βi ≥ 0 for all i and
∑n

i=1 βi = 1.

• Consumers own all production factors, and use their income to finance consumption:∑
i

pici = I = wUU + wSS + rK.

• Consumers maximize utility subject to their budget constraint
∑

i pici = I, taking prices {pi}
as given.

• Intermediate good producers maximize profits:

max
{dji},{fji},ki,li

(1−τi)piΛi
(

1

1− γi − σi
kαi u

δ
i s

1−α−δ
i

)1−γi−σi
(
d1i
γ1i

)γ1i
·...·
(
dni
γni

)γni

·
(
f1i
σ1i

)σ1i

·...·
(
fni
σni

)σni

−
n∑
j=1

pjdji −
n∑
j=1

pjfji − rki − wli, i ∈ 1 : n

taking prices {pj}, {pj} of all goods and prices of labor and capital, w and r, as given (τi and
Λi are exogenous). τi is a sector-specific wedge that reduces the value of sector i’s production
by a factor (1− τi).
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• The total supply of physical capital, unskilled and skilled labor are fixed at the exogenous
levels of K, U and S, respectively, and we normalize U + S = 1:

n∑
i=1

ki = K,

n∑
i=1

ui = U,

n∑
i=1

si = S.

• Numeraire: P =
∏n
i=1 (pi)

βi = 1.

• Definition of real GDP: Y =
∑n

i=1 pici = u.

For this “generic” economy, the competitive equilibrium is described by the following proposition.

Proposition 5. There exists a unique competitive equilibrium. In this equilibrium, the logarithm
of GDP per capita, y = ln (Y ), is given by

y =
1∑n

i=1 µi(1− γi − σi)

 n∑
i=1

µiλi −
n∑
i=1

n∑
j=1

µiσji ln p̄j +
n∑
i=1

µi ln(1− τi)

+

+α lnK + δ lnU + (1− α− δ) lnS, (A-1)

where

µ = {µi}i = [I − Γ]−1β, n× 1 vector of multipliers

Γ = {γji}ji, n× n input-output matrix for domestic intermediates

λ = {λi}i = {ln Λi}i, n× 1 vector of sectoral log-productivity coefficients

Proof. Part I: Calculation of lnwU .
Consider a profit maximization problem of the representative firm in each sector i. The FOCs are:

α(1− γi − σi)(1− τi)
piqi
r

= ki (A-2)

δ(1− γi − σi)(1− τi)
piqi
wU

= ui (A-3)

(1− α− δ)(1− γi − σi)(1− τi)
piqi
wS

= si (A-4)

γji(1− τi)
piqi
pj

= dji j ∈ 1 : n (A-5)

σji(1− τi)
piqi
p̄j

= fji j ∈ 1 : n (A-6)

Substituting the left-hand side of these equations for the values of ki, ui, si, {dji} and {fji} in firm
i’s log-production technology and simplifying the obtained expression, we derive:

δ lnwU =
1

1− γi − σi

(
λi + ln pi −

n∑
j=1

γji ln pj −
n∑
j=1

σji ln p̄j + ln(1− τi)
)
−

−α ln r − (1− α− δ) ln(wS) + α lnα+ δ ln δ + (1− α− δ) ln(1− α− δ). (A-7)

Next, we use FOCs (A-2) – (A-6) and market clearing conditions for labor and capital to express
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r and wS in terms of wU :

wU =
1

U
δ

n∑
i=1

(1− γi − σi)(1− τi)(piqi) (A-8)

wS =
1

S
(1− α− δ)

n∑
i=1

(1− γi − σi)(1− τi)(piqi) =
wUU

S

1− α− δ
δ

(A-9)

r =
1

K
α

n∑
i=1

(1− γi − σi)(1− τi)(piqi) =
wuU

K

α

δ
(A-10)

Substituting these values of r and wS in (A-7) we obtain:

lnwU =
1

1− γi − σi

(
λi + ln pi −

n∑
j=1

γji ln pj −
n∑
j=1

σji ln p̄j + ln(1− τi)
)

+

+α lnK − (1− δ) lnU + (1− α− δ) lnS + ln δ

Multiplying this equation by the ith element of the vector µ′D = β′[I − Γ′]−1 ·D, where D is a
diagonal matrix with Dii = 1− γi − σi, and summing over all sectors i gives

lnwU

n∑
i=1

µi(1− γi − σi) =

n∑
i=1

µiλi +

n∑
i=1

βi ln pi −
n∑
i=1

n∑
j=1

µiσji ln p̄j +

n∑
i=1

µi ln(1− τi) +

+

n∑
i=1

µi(1− γi − σi)
(
α lnK − (1− δ) lnU + (1− α− δ) lnS + ln δ

)
Next, we use the price index normalization P =

∏n
i=1 (pi)

βi = 1, which implies that
∑n

i=1 βi ln pi =
0. Then we can write the above equation as follows:

lnwU =
1∑n

i=1 µi(1− γi − σi)

 n∑
i=1

µiλi −
n∑
i=1

n∑
j=1

µiσji ln p̄j +
n∑
i=1

µi ln(1− τi)

+

+α lnK − (1− δ) lnU + (1− α− δ) lnS + ln δ (A-11)

Part II: Calculation of y.
Recall that our ultimate goal is to find y = ln (Y ) = ln (

∑
i pici). Since consumers’ expenditure is

financed through income, Y =
∑

i pici = wUU + wSS + rK.
Using (A-9) and (A-10), this leads to

Y =
wUU

δ
.

so that
y = lnY = lnwU + lnU − ln δ.

Finally, substituting (A-11) for lnwU yields our result:

y =
1∑n

i=1 µi(1− γi − σi)

 n∑
i=1

µiλi −
n∑
i=1

n∑
j=1

µiσji ln p̄j +

n∑
i=1

µi ln(1− τi)

+

+α lnK − (1− δ) lnU + (1− α− δ) lnS + ln δ + lnU − ln δ
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that is,

y =
1∑n

i=1 µi(1− γi − σi)

 n∑
i=1

µiλi −
n∑
i=1

n∑
j=1

µiσji ln p̄j +

n∑
i=1

µi ln(1− τi)

+

+α lnK + δ lnU + (1− α− δ) lnS.

This completes the proof.

Application of Proposition 5 to the case of the benchmark economy (Proposition 1) and robustness
checks (Propositions 2 – 4):

• Benchmark economy, Proposition 1: In case of our benchmark economy, we assume that:
i) there is no distinction between skilled and unskilled labor, so that δ = 1 − α and the
total supply of labor is normalized to 1; ii) the economies are closed, so that no imported
intermediate goods are used in sectors’ production, that is, σji = 0 for all i, j ∈ 1 : n and
σi = 0 for all i; iii) there are no wedges, that is, τi = 0 for all i. This simplifies the expression
for y in Proposition 5 and produces the result of Proposition 1:37

y =
n∑
i=1

µiλi + α lnK.

• Wedges, Proposition 2: For the economy with sector-specific wedges, we assume, in addition
to the benchmark model, that there exist non-zero distortions, or wedges τi 6= 0. Then the
expression for y in Proposition 5 turns into

y =

n∑
i=1

µiλi +

n∑
i=1

µi ln(1− τi) + α lnK.

• Traded intermediate goods, Proposition 3: In the economy, where we differentiate between
domestically produced and imported intermediates, σji 6= 0 and σi 6= 0. But, as in the
benchmark model, there is no distinction between skilled and unskilled labor, and no wedges.
In addition, due to restrictions imposed by the data, we assume that import prices do not
vary across sectors, that is, ρj = ρ, where ρj = p̄j/P , and P is normalized to 1. Then∑n

i=1

∑n
j=1 µiσji ln p̄j = ln ρ

∑n
i=1 µiσi, and the expression for y in Proposition 5 becomes:

y =
1∑n

i=1 µi(1− σi − γi)

(
n∑
i=1

µiλi − ln ρ

n∑
i=1

µiσi

)
+ α lnK,

• Human capital, Proposition 4: The model where we introduce two types of labor, skilled and
unskilled, is identical to the benchmark model in all other respects. So, the expression for y is

y =
n∑
i=1

µiλi + α lnK + δ lnU + (1− α− δ) lnS.

37Note that
∑n
i=1 µi(1− γi) = 1′[I − Γ] · 1

n
[I − Γ]−11 = 1

n
1′1 = 1.
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Appendix B: Derivation of the productivity index

In section 2.5, the multilateral sector-specific Cobb-Douglas productivity index lnλ∗ikl in (16) is
obtained as follows. Using (15) and definition of lnλiks in (13), we obtain:

lnλ∗ikl ≡ lnλik − lnλil =
1

m

m∑
s=1

lnλiks −
1

m

m∑
s=1

lnλils =

= (ln qik −
1

m

m∑
s=1

ln qis)−
1

2

[
αXik

(
lnXik −

1

m

m∑
s=1

lnXis

)
+

1

m

m∑
s=1

αXis (lnXik − lnXis)

]
−

−(ln qil −
1

m

m∑
s=1

ln qis) +
1

2

[
αXil

(
lnXil −

1

m

m∑
s=1

lnXis

)
+

1

m

m∑
s=1

αXis (lnXil − lnXis)

]
=

= (ln qik − ln qil)−
1

2

[
αXik

(
lnXik −

1

m

m∑
s=1

lnXis

)
− αXil

(
lnXil −

1

m

m∑
s=1

lnXis

)
+

+
1

m

m∑
s=1

αXis (lnXik − lnXil)

]
.

Combining the terms, we derive (16):

lnλ∗ikl = ln qik − ln qil −
1

2
(αXik + αXi)

(
lnXik − lnXi

)
+

1

2
(αXil + αXi)

(
lnXil − lnXi

)
,

where αXi = 1
m

∑m
s=1 αXis and lnXi = 1

m

∑m
s=1 lnXis.

Appendix C: Additional Tables

Table A-1: Countries: WIOD Sample

countries
AUS IND
AUT IRL
BEL ITA
BGR KOR
BRA JPN
CAN LTU
CHN LVA
CYP MEX
CZE MLT
DEU NLD
DNK POL
ESP PRT
EST ROM
FIN RUS
FRA SVK
GBR SVN
GRC SWE
HUN TUR
IDN USA
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Table A-2: Sector List

WIOD sectors
1 Agriculture
2 Mining
3 Food
4 Textiles
5 Leather
6 Wood
7 Paper
8 Refining
9 Chemicals

10 Plastics
11 Minerals
12 Metal products
13 Machinery
14 Elec. equip.
15 Transport equip.
16 Manufacturing nec
17 Electricity
18 Construction
19 Car retail.
20 Wholesale trade
21 Retail trade
22 Restaurants
23 Inland transp.
24 Water transp.
25 Air transp.
26 Transp. nec.
27 Telecomm.
28 Fin. serv.
29 Real est.
30 Business serv.
31 Pub. admin.
32 Education
33 Health
34 Social serv.
35 Household empl.
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Figure A-1: Sectoral IO multipliers
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